Departament d'Enginyeria Química, Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla Sant Nebridi 22, 08222, Terrassa, Catalonia, Spain.
Campo Experimental Bajío, INIFAP, Km 6.5 Carretera Celaya-San Miguel de Allende, CP 38110, Celaya Gto, Mexico.
Cell Mol Life Sci. 2022 Jan 7;79(1):58. doi: 10.1007/s00018-021-04086-0.
Mutations in the photoreceptor protein rhodopsin are known as one of the leading causes of retinal degeneration in humans. Two rhodopsin mutations, Y102H and I307N, obtained in chemically mutagenized mice, are currently the subject of increased interest as relevant models for studying the process of retinal degeneration in humans. Here, we report on the biochemical and functional characterization of the structural and functional alterations of these two rhodopsin mutants and we compare them with the G90V mutant previously analyzed, as a basis for a better understanding of in vivo studies. This mechanistic knowledge is fundamental to use it for developing novel therapeutic approaches for the treatment of inherited retinal degeneration in retinitis pigmentosa. We find that Y102H and I307N mutations affect the inactive-active equilibrium of the receptor. In this regard, the mutations reduce the stability of the inactive conformation but increase the stability of the active conformation. Furthermore, the initial rate of the functional activation of transducin, by the I307N mutant is reduced, but its kinetic profile shows an unusual increase with time suggesting a profound effect on the signal transduction process. This latter effect can be associated with a change in the flexibility of helix 7 and an indirect effect of the mutation on helix 8 and the C-terminal tail of rhodopsin, whose potential role in the functional activation of the receptor has been usually underestimated. In the case of the Y102H mutant, the observed changes can be associated with conformational alterations affecting the folding of the rhodopsin intradiscal domain, and its presumed involvement in the retinal binding process by the receptor.
视蛋白基因突变是导致人类视网膜变性的主要原因之一。两种视蛋白突变,Y102H 和 I307N,是在化学诱变的老鼠中获得的,目前作为研究人类视网膜变性过程的相关模型引起了越来越多的关注。在这里,我们报告了这两种视蛋白突变体的结构和功能改变的生化和功能特征,并将其与之前分析的 G90V 突变体进行了比较,作为更好地理解体内研究的基础。这种机制上的知识对于开发治疗色素性视网膜炎遗传性视网膜变性的新的治疗方法是至关重要的。我们发现 Y102H 和 I307N 突变影响受体的无活性-活性平衡。在这方面,突变降低了无活性构象的稳定性,但增加了活性构象的稳定性。此外,I307N 突变体转导蛋白的功能激活的初始速率降低,但它的动力学曲线随着时间的推移显示出异常的增加,表明对信号转导过程有深远的影响。这种后一种效应可能与螺旋 7 的柔韧性变化有关,以及突变对螺旋 8 和视蛋白 C 末端尾巴的间接影响,其在受体的功能激活中的潜在作用通常被低估。就 Y102H 突变体而言,观察到的变化可能与影响视蛋白内部盘区折叠的构象改变有关,并且其可能涉及受体的视网膜结合过程。