Department of Environmental Engineering, University of South Australia, 101 Currie St, Adelaide, SA, 5001, Australia.
Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa bin Zayed Street, 15551, Al-Ain, United Arab Emirates.
Environ Sci Pollut Res Int. 2022 Apr;29(20):30126-30133. doi: 10.1007/s11356-021-17650-9. Epub 2022 Jan 8.
Bromination mechanisms of aromatic pollutants assume a chief contribution in the observed yields and pattern's distribution of a wide array of dioxin-like toxicants. However, salient features of the governing pathways remain largely speculative. This study presents detail mechanistic insights into two commonly discussed routes; namely: surface-assisted conversion of HBr into Br and direct bromine transfer from oxybromides into a benzene ring. Utilizing iron surfaces, as structural representative of the metallic content in electronic wastes, results from density functional theory calculations portray accessible reactions into the successive dissociative adsorption of HBr over the Fe(100) surface and the subsequent evolution of gas phase bromine molecules. Activation energies for HBr uptake by the plain iron surface reside in the range of 129-182 kJ/mol. Over an oxygen pre-covered surface, dissociative adsorption of HBr leading to bromine molecules requires significantly lower activation energies (45-78 kJ/mol). Likewise, bromination of a benzene ring into a monobromobenzene molecule over Fe(100)_OBr (i.e., an oxybromide) configuration ensues with an opening activation energy of ~ 165 kJ/mol. Adsorption of a phenyl radical over an iron-oxybromide forms a phenolate moiety that subsequently desorbs from the surface into a phenoxy radical. Reaction pathways presented herein shall be useful in the ongoing efforts to comprehend the formation and bromination routes of the notorious bromine-bearing pollutants in real scenarios, such as, these encountered in the open burning and primitive thermal recycling of electronic wastes.
芳香族污染物的溴化机制在观察到的一系列类似二恶英的有毒物质的产率和模式分布中起着主要作用。然而,控制途径的显著特征在很大程度上仍存在推测。本研究深入探讨了两种常见的讨论途径的详细机制;即:表面辅助将 HBr 转化为 Br 和直接从氧溴化物向苯环转移溴。利用铁表面作为电子废物中金属含量的结构代表,密度泛函理论计算的结果描绘了可及的反应,即 HBr 在 Fe(100)表面上连续的解离吸附以及随后气相溴分子的演化。 plain iron 表面对 HBr 的吸收的活化能位于 129-182 kJ/mol 的范围内。在预先覆盖有氧气的表面上,导致溴分子的 HBr 解离吸附需要显著更低的活化能(45-78 kJ/mol)。同样,在 Fe(100)_OBr(即氧溴化物)构型上,将苯环溴化为单溴苯分子需要 165 kJ/mol 左右的开环活化能。苯基自由基在铁-氧溴化物上的吸附形成酚盐部分,随后从表面解吸为酚氧基自由基。本文提出的反应途径将有助于理解在真实情况下,如在电子废物的露天燃烧和原始热回收中遇到的,这些含溴污染物的形成和溴化途径。