Borra Davide, Magosso Elisa
Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, 47522 Cesena, Italy.
Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, 40126 Bologna, Italy.
J Integr Neurosci. 2021 Dec 30;20(4):791-811. doi: 10.31083/j.jin2004083.
The neural processing of incoming stimuli can be analysed from the electroencephalogram (EEG) through event-related potentials (ERPs). The P3 component is largely investigated as it represents an important psychophysiological marker of psychiatric disorders. This is composed by several subcomponents, such as P3a and P3b, reflecting distinct but interrelated sensory and cognitive processes of incoming stimuli. Due to the low EEG signal-to-noise-ratio, ERPs emerge only after an averaging procedure across trials and subjects. Thus, this canonical ERP analysis lacks in the ability to highlight EEG neural signatures at the level of single-subject and single-trial. In this study, a deep learning-based workflow is investigated to enhance EEG neural signatures related to P3 subcomponents already at single-subject and at single-trial level. This was based on the combination of a convolutional neural network (CNN) with an explanation technique (ET). The CNN was trained using two different strategies to produce saliency representations enhancing signatures shared across subjects or more specific for each subject and trial. Cross-subject saliency representations matched the signatures already emerging from ERPs, i.e., P3a and P3b-related activity within 350-400 ms (frontal sites) and 400-650 ms (parietal sites) post-stimulus, validating the CNN+ET respect to canonical ERP analysis. Single-subject and single-trial saliency representations enhanced P3 signatures already at the single-trial scale, while EEG-derived representations at single-subject and single-trial level provided no or only mildly evident signatures. Empowering the analysis of P3 modulations at single-subject and at single-trial level, CNN+ET could be useful to provide insights about neural processes linking sensory stimulation, cognition and behaviour.
可以通过事件相关电位(ERP)从脑电图(EEG)分析传入刺激的神经处理过程。P3成分得到了大量研究,因为它是精神疾病的一个重要心理生理标志物。它由几个子成分组成,如P3a和P3b,反映了传入刺激的不同但相互关联的感觉和认知过程。由于EEG信号噪声比低,ERP仅在对试验和受试者进行平均程序后才会出现。因此,这种传统的ERP分析缺乏在单受试者和单试验水平上突出EEG神经特征的能力。在本研究中,研究了一种基于深度学习的工作流程,以增强在单受试者和单试验水平上已经与P3子成分相关的EEG神经特征。这是基于卷积神经网络(CNN)与一种解释技术(ET)的结合。使用两种不同的策略对CNN进行训练,以产生显著表示,增强受试者之间共享的特征或对每个受试者和试验更具特异性的特征。跨受试者的显著表示与ERP中已经出现的特征相匹配,即刺激后350 - 400毫秒(额叶部位)和400 - 650毫秒(顶叶部位)内与P3a和P3b相关的活动,相对于传统的ERP分析验证了CNN + ET。单受试者和单试验的显著表示在单试验尺度上增强了P3特征,而单受试者和单试验水平上源自EEG的表示则没有或仅提供了轻微明显的特征。CNN + ET能够在单受试者和单试验水平上增强对P3调制的分析,有助于深入了解连接感觉刺激、认知和行为的神经过程。