Suppr超能文献

使用单试次事件相关电位和卷积神经网络对记忆任务中已知和未知学习项目进行分类

Classification of Known and Unknown Study Items in a Memory Task Using Single-Trial Event-Related Potentials and Convolutional Neural Networks.

作者信息

Delgado-Munoz Jorge, Matsunaka Reiko, Hiraki Kazuo

机构信息

Graduate School of Arts and Sciences, The University of Tokyo, Meguro-Ku, Tokyo 153-8902, Japan.

出版信息

Brain Sci. 2024 Aug 26;14(9):860. doi: 10.3390/brainsci14090860.

Abstract

This study examines the feasibility of using event-related potentials (ERPs) obtained from electroencephalographic (EEG) recordings as biomarkers for long-term memory item classification. Previous studies have identified old/new effects in memory paradigms associated with explicit long-term memory and familiarity. Recent advancements in convolutional neural networks (CNNs) have enabled the classification of ERP trials under different conditions and the identification of features related to neural processes at the single-trial level. We employed this approach to compare three CNN models with distinct architectures using experimental data. Participants ( = 25) performed an association memory task while recording ERPs that were used for training and validation of the CNN models. The EEGNET-based model achieved the most reliable performance in terms of precision, recall, and specificity compared with the shallow and deep convolutional approaches. The classification accuracy of this model reached 62% for known items and 66% for unknown items. Good overall accuracy requires a trade-off between recall and specificity and depends on the architecture of the model and the dataset size. These results suggest the possibility of integrating ERP and CNN into online learning tools and identifying the underlying processes related to long-term memorization.

摘要

本研究探讨了将脑电图(EEG)记录获得的事件相关电位(ERP)用作长期记忆项目分类生物标志物的可行性。先前的研究已经在与显性长期记忆和熟悉度相关的记忆范式中识别出新旧效应。卷积神经网络(CNN)的最新进展使得能够在不同条件下对ERP试验进行分类,并在单试验水平上识别与神经过程相关的特征。我们采用这种方法,使用实验数据比较了三种具有不同架构的CNN模型。参与者(n = 25)执行关联记忆任务,同时记录用于CNN模型训练和验证的ERP。与浅层和深层卷积方法相比,基于EEGNET的模型在精度、召回率和特异性方面表现出最可靠的性能。该模型对已知项目的分类准确率达到62%,对未知项目的分类准确率达到66%。良好的总体准确率需要在召回率和特异性之间进行权衡,并且取决于模型的架构和数据集大小。这些结果表明,将ERP和CNN集成到在线学习工具中,并识别与长期记忆相关的潜在过程是有可能的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b75/11430714/2b910b167ea2/brainsci-14-00860-g008a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验