Suppr超能文献

使用功能脑成像鉴定∆9-四氢大麻酚(THC)损伤。

Identification of ∆9-tetrahydrocannabinol (THC) impairment using functional brain imaging.

机构信息

Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

Neuropsychopharmacology. 2022 Mar;47(4):944-952. doi: 10.1038/s41386-021-01259-0. Epub 2022 Jan 8.

Abstract

The primary cannabinoid in cannabis, Δ9-tetrahydrocannabinol (THC), causes intoxication and impaired function, with implications for traffic, workplace, and other situational safety risks. There are currently no evidence-based methods to detect cannabis-impaired driving, and current field sobriety tests with gold-standard, drug recognition evaluations are resource-intensive and may be prone to bias. This study evaluated the capability of a simple, portable imaging method to accurately detect individuals with THC impairment. In this double-blind, randomized, cross-over study, 169 cannabis users, aged 18-55 years, underwent functional near-infrared spectroscopy (fNIRS) before and after receiving oral THC and placebo, at study visits one week apart. Impairment was defined by convergent classification by consensus clinical ratings and an algorithm based on post-dose tachycardia and self-rated "high." Our primary outcome, prefrontal cortex (PFC) oxygenated hemoglobin concentration (HbO), was increased after THC only in participants operationalized as impaired, independent of THC dose. ML models using fNIRS time course features and connectivity matrices identified impairment with 76.4% accuracy, 69.8% positive predictive value (PPV), and 10% false-positive rate using convergent classification as ground truth, which exceeded Drug Recognition Evaluator-conducted expanded field sobriety examination (67.8% accuracy, 35.4% PPV, and 35.4% false-positive rate). These findings demonstrate that PFC response activation patterns and connectivity produce a neural signature of impairment, and that PFC signal, measured with fNIRS, can be used as a sole input to ML models to objectively determine impairment from THC intoxication at the individual level. Future work is warranted to determine the specificity of this classifier to acute THC impairment.ClinicalTrials.gov Identifier: NCT03655717.

摘要

大麻中的主要大麻素 Δ9-四氢大麻酚(THC)会引起中毒和功能障碍,对交通、工作场所和其他情境安全风险产生影响。目前尚无基于证据的方法来检测大麻引起的驾驶障碍,而目前使用金标准药物识别评估的现场清醒测试资源密集且可能存在偏差。本研究评估了一种简单、便携的成像方法准确检测 THC 损伤个体的能力。在这项双盲、随机、交叉研究中,169 名年龄在 18-55 岁的大麻使用者在相隔一周的两次研究访问中,分别在接受口服 THC 和安慰剂前后接受功能近红外光谱(fNIRS)检查。损伤的定义是通过共识临床评分和基于给药后心动过速和自我评定“高”的算法进行的综合分类来确定的。我们的主要结果是,只有在根据共识临床评分和基于给药后心动过速和自我评定“高”的算法被认为受损的参与者中,前额叶皮层(PFC)的氧合血红蛋白浓度(HbO)在接受 THC 后才会增加,而与 THC 剂量无关。使用 fNIRS 时间过程特征和连接矩阵的 ML 模型以 76.4%的准确率、69.8%的阳性预测值(PPV)和 10%的假阳性率识别损伤,使用综合分类作为地面真相,超过了药物识别评估员进行的扩展现场清醒检查(67.8%的准确率、35.4%的 PPV 和 35.4%的假阳性率)。这些发现表明,PFC 反应激活模式和连接产生了损伤的神经特征,并且使用 fNIRS 测量的 PFC 信号可以作为 ML 模型的唯一输入,用于在个体水平上客观地确定 THC 中毒引起的损伤。需要进一步的工作来确定这个分类器对急性 THC 损伤的特异性。ClinicalTrials.gov 标识符:NCT03655717。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18cf/8882180/ef59598f4762/41386_2021_1259_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验