Gurung Arun Bahadur, Ali Mohammad Ajmal, Lee Joongku, Farah Mohammad Abul, Al-Anazi Khalid Mashay, Al-Hemaid Fahad
Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
J King Saud Univ Sci. 2022 Feb;34(2):101810. doi: 10.1016/j.jksus.2021.101810. Epub 2022 Jan 3.
The need for novel antiviral treatments for coronavirus disease 2019 (COVID-19) continues with the widespread infections and fatalities throughout the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the deadly disease, relies on the non-structural protein Nsp1 for multiplication within the host cells and disarms the host immune defences by various mechanisms. Herein, we investigated the potential of artemisinin and its derivatives as possible inhibitors of SARS-CoV-2 Nsp1 through various computational approaches. Molecular docking results show that artemisinin (CID68827) binds to Nsp1 with a binding energy of -6.53 kcal/mol and an inhibition constant of 16.43 µM. The top 3 derivatives Artesunate (CID6917864), Artemiside (CID53323323) and Artemisone (CID11531457) show binding energies of -7.92 kcal/mol, -7.46 kcal/mol and -7.36 kcal/mol respectively. Hydrophobic interactions and hydrogen bonding with Val10, Arg11, and Gln50 helped to stabilize the protein-ligand complexes. The pharmacokinetic properties of these molecules show acceptable properties. The geometric parameters derived from large-scale MD simulation studies provided insights into the changes in the structural topology of Nsp1 upon binding of Artesunate. Thus, the findings of our research highlight the importance of artemisinin and its derivatives in the development of drugs to inhibit SARS-CoV-2 Nsp1 protein.
随着新冠病毒病(COVID-19)在全球范围内广泛感染并导致死亡,对新型抗病毒治疗方法的需求依然存在。严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是这种致命疾病的病原体,它依靠非结构蛋白Nsp1在宿主细胞内增殖,并通过多种机制解除宿主的免疫防御。在此,我们通过各种计算方法研究了青蒿素及其衍生物作为SARS-CoV-2 Nsp1可能抑制剂的潜力。分子对接结果表明,青蒿素(CID68827)与Nsp1结合,结合能为-6.53千卡/摩尔,抑制常数为16.43微摩尔。排名前三的衍生物青蒿琥酯(CID6917864)、青蒿酰胺(CID53323323)和蒿甲醚(CID11531457)的结合能分别为-7.92千卡/摩尔、-7.46千卡/摩尔和-7.36千卡/摩尔。与Val10、Arg11和Gln50的疏水相互作用和氢键有助于稳定蛋白质-配体复合物。这些分子的药代动力学性质显示出可接受的性质。从大规模分子动力学模拟研究中得出的几何参数为青蒿琥酯结合后Nsp1结构拓扑的变化提供了见解。因此,我们的研究结果突出了青蒿素及其衍生物在开发抑制SARS-CoV-2 Nsp1蛋白药物方面的重要性。