Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.
Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.
Int J Nanomedicine. 2021 Dec 31;16:8485-8507. doi: 10.2147/IJN.S334298. eCollection 2021.
Mesenchymal stem cells (MSCs) are considered a promising regenerative therapy due to their ability to migrate toward damaged tissues. The homing ability of MSCs is unique compared with that of non-migrating cells and MSCs are considered promising therapeutic vectors for targeting major cells in many pathophysiological sites. MSCs have many advantages in the treatment of malignant diseases, particularly rheumatoid arthritis (RA). RA is a representative autoimmune disease that primarily affects joints, and secreted chemokines in the joints are well recognized by MSCs following their migration to the joints. Furthermore, MSCs can regulate the inflammatory process and repair damaged cells in the joints. However, the functionality and migration ability of MSCs injected in vivo still show insufficient. The targeting ability and migration efficiency of MSCs can be enhanced by genetic engineering or modification, eg, overexpressing chemokine receptors or migration-related genes, thus maximizing their therapeutic effect. However, there are concerns about genetic changes due to the increased probability of oncogenesis resulting from genome integration of the viral vector, and thus, clinical application is limited. Furthermore, it is suspected that administering MSCs can promote tumor growth and metastasis in xenograft and orthotopic models. For this reason, MSC mimicking nanoencapsulations are an alternative strategy that does not involve using MSCs or bioengineered MSCs. MSC mimicking nanoencapsulations consist of MSC membrane-coated nanoparticles, MSC-derived exosomes and artificial ectosomes, and MSC membrane-fused liposomes with natural or genetically engineered MSC membranes. MSC mimicking nanoencapsulations not only retain the targeting ability of MSCs but also have many advantages in terms of targeted drug delivery. Specifically, MSC mimicking nanoencapsulations are capable of encapsulating drugs with various components, including chemotherapeutic agents, nucleic acids, and proteins. Furthermore, there are fewer concerns over safety issues on MSC mimicking nanoencapsulations associated with mutagenesis even when using genetically engineered MSCs, because MSC mimicking nanoencapsulations use only the membrane fraction of MSCs. Genetic engineering is a promising route in clinical settings, where nano-encapsulated technology strategies are combined. In this review, the mechanism underlying MSC homing and the advantages of MSC mimicking nanoencapsulations are discussed. In addition, genetic engineering of MSCs and MSC mimicking nanoencapsulation is described as a promising strategy for the treatment of immune-related diseases.
间充质干细胞(MSCs)因其向损伤组织迁移的能力而被认为是一种有前途的再生治疗方法。与非迁移细胞相比,MSCs 的归巢能力是独特的,并且 MSCs 被认为是靶向许多病理生理部位主要细胞的有前途的治疗载体。MSCs 在治疗恶性疾病方面有许多优势,特别是类风湿关节炎(RA)。RA 是一种代表性的自身免疫性疾病,主要影响关节,并且关节中分泌的趋化因子在 MSCs 迁移到关节后被很好地识别。此外,MSCs 可以调节关节中的炎症过程并修复受损细胞。然而,体内注射的 MSCs 的功能和迁移能力仍然显示出不足。通过遗传工程或修饰(例如,过表达趋化因子受体或迁移相关基因)可以增强 MSCs 的靶向能力和迁移效率,从而最大限度地发挥其治疗效果。然而,由于病毒载体基因组整合导致致癌可能性增加,因此存在对遗传变化的担忧,因此临床应用受到限制。此外,有人怀疑给予 MSCs 会促进异种移植和原位模型中肿瘤的生长和转移。出于这个原因,MSC 模拟纳米囊泡是一种替代策略,不涉及使用 MSCs 或生物工程化的 MSCs。MSC 模拟纳米囊泡由 MSC 膜包被的纳米颗粒、MSC 衍生的外泌体和人工外体以及 MSC 膜融合的脂质体组成,这些脂质体具有天然或基因工程化的 MSC 膜。MSC 模拟纳米囊泡不仅保留了 MSCs 的靶向能力,而且在靶向药物递送方面具有许多优势。具体而言,MSC 模拟纳米囊泡能够包封具有各种成分的药物,包括化疗药物、核酸和蛋白质。此外,即使使用基因工程化的 MSCs,也很少担心与诱变相关的 MSC 模拟纳米囊泡的安全性问题,因为 MSC 模拟纳米囊泡仅使用 MSCs 的膜部分。遗传工程是一种有前途的临床途径,其中纳米封装技术策略相结合。在这篇综述中,讨论了 MSC 归巢的机制和 MSC 模拟纳米囊泡的优势。此外,还描述了 MSCs 的遗传工程和 MSC 模拟纳米囊泡作为治疗免疫相关疾病的有前途的策略。
Int J Nanomedicine. 2021
Int J Med Sci. 2018-6-22
Rheumatology (Oxford). 2014-10-6
Regen Ther. 2025-7-23
Int J Nanomedicine. 2025-7-11
Expert Rev Mol Med. 2024-10-23
Med Oncol. 2024-10-14
NPJ Regen Med. 2024-5-10
Free Radic Biol Med. 2021-11-1
Nanomicro Lett. 2019-11-16
Int J Mol Sci. 2021-3-18
Cancer Drug Resist. 2020
Nat Biomed Eng. 2021-9
Signal Transduct Target Ther. 2021-2-8
Theranostics. 2021