人工智能自动评估髋关节超声扫描质量
Artificial Intelligence to Automatically Assess Scan Quality in Hip Ultrasound.
作者信息
Hareendranathan Abhilash Rakkundeth, Chahal Baljot S, Zonoobi Dornoosh, Sukhdeep Dulai, Jaremko Jacob L
机构信息
Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, T6G 2B7 Canada.
MEDO.ai Inc, Singapore, Singapore.
出版信息
Indian J Orthop. 2021 Jul 17;55(6):1535-1542. doi: 10.1007/s43465-021-00455-w. eCollection 2021 Dec.
PURPOSE
Since it is fast, inexpensive and increasingly portable, ultrasound can be used for early detection of Developmental Dysplasia of the Hip (DDH) in infants at point-of-care. However, accurate interpretation\is highly dependent on scan quality. Poor-quality images lead to misdiagnosis, but inexperienced users may not even recognize the deficiencies in the images. Currently, users assess scan quality subjectively, based on image landmarks which are prone to human errors. Instead, we propose using Artificial Intelligence (AI) to automatically assess scan quality.
METHODS
We trained separate Convolutional Neural Network (CNN) models to detect presence of each of four commonly used ultrasound landmarks in each hip image: straight horizontal iliac wing, labrum, os ischium and midportion of the femoral head. We used 100 3D ultrasound (3DUS) images for training and validated the technique on a set of 107 3DUS images also scored for landmarks by three non-expert readers and one expert radiologist.
RESULTS
We got AI ≥ 85% accuracy for all four landmarks (ilium = 0.89, labrum = 0.94, os ischium = 0.85, femoral head = 0.98) as a binary classifier between adequate and inadequate scan quality. Our technique also showed excellent agreement with manual assessment in terms of Intraclass Correlation Coefficient (ICC) and Cohen's kappa coefficient () for ilium (ICC = 0.81, = 0.56), os ischium (ICC = 0.89, = 0.63) and femoral head (ICC = 0.83, = 0.66), and moderate to good agreement for labrum (ICC = 0.65, = 0.33).
CONCLUSION
This new technique could ensure high scan quality and facilitate more widespread use of ultrasound in population screening of DDH.
目的
由于超声检查快速、廉价且日益便携,可用于在医疗现场对婴儿发育性髋关节发育不良(DDH)进行早期检测。然而,准确解读高度依赖于扫描质量。质量不佳的图像会导致误诊,但经验不足的使用者甚至可能无法识别图像中的缺陷。目前,使用者基于易出现人为误差的图像标志进行主观评估扫描质量。相反,我们建议使用人工智能(AI)自动评估扫描质量。
方法
我们训练了单独的卷积神经网络(CNN)模型,以检测每个髋关节图像中四个常用超声标志的存在情况:水平的髂骨翼、盂唇、坐骨和股骨头中部。我们使用100张三维超声(3DUS)图像进行训练,并在一组107张3DUS图像上验证了该技术,这组图像也由三位非专业读者和一位专家放射科医生对标进行了评分。
结果
作为扫描质量充足与不足之间的二分类器,我们得到的AI对所有四个标志的准确率均≥85%(髂骨=0.89,盂唇=0.94,坐骨=0.85,股骨头=0.98)。我们的技术在类内相关系数(ICC)和科恩kappa系数()方面也与人工评估显示出极好的一致性,对于髂骨(ICC = 0.81,= 0.56)、坐骨(ICC = 0.89,= 0.63)和股骨头(ICC = 0.83,= 0.66),对于盂唇则显示出中度至良好的一致性(ICC = 0.65,= 0.33)。
结论
这项新技术可以确保高扫描质量,并促进超声在DDH人群筛查中的更广泛应用。