Suppr超能文献

血管内光学相干断层扫描中对组织覆盖极厚情况的支架检测

Stent detection with very thick tissue coverage in intravascular OCT.

作者信息

Yang Guangqian, Mehanna Emile, Li Chao, Zhu Hongyi, He Chong, Lu Fang, Zhao Ke, Gong Yubin, Wang Zhao

机构信息

School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.

Contributed equally.

出版信息

Biomed Opt Express. 2021 Nov 11;12(12):7500-7516. doi: 10.1364/BOE.444336. eCollection 2021 Dec 1.

Abstract

Coronary stenting or percutaneous coronary intervention (PCI) is widely used to treat coronary artery disease. Improper deployment of stents may lead to post-PCI complication, in-stent restenosis, stent fracture and stent thrombosis. Intravascular optical coherence tomography (OCT) with micron-scale resolution provides accurate in vivo assessment of stent apposition/malapposition and neointima coverage. However, manual stent analysis is labor intensive and time consuming. Existing automated methods with intravascular OCT mainly focused on stent struts with thin tissue coverage. We developed a deep learning method to automatically analyze stents with both thin (≤0.3mm) and very thick tissue coverage (>0.3mm), and an algorithm to accurately analyze stent area for vessels with multiple stents. 25203 images from 56 OCT pullbacks and 41 patients were analyzed. Three-fold cross-validation demonstrated that the algorithm achieved a precision of 0.932±0.009 and a sensitivity of 0.939±0.007 for stents with ≤0.3mm tissue coverage, and a precision of 0.856±0.019 and a sensitivity of 0.874±0.011 for stents with >0.3mm tissue coverage. The correlation between the automatically computed and manually measured stent area is 0.954 (p<0.0001) for vessels with a single stent, and is 0.918 (p<0.0001) for vessels implanted with multiple stents. The proposed method can accurately detect stent struts with very thick tissue coverage and analyze stent area in vessels implanted with multiple stents, and can effectively facilitate the evaluation of stent implantation and post-stent tissue coverage.

摘要

冠状动脉支架置入术或经皮冠状动脉介入治疗(PCI)被广泛用于治疗冠状动脉疾病。支架植入不当可能导致PCI术后并发症、支架内再狭窄、支架断裂和支架血栓形成。具有微米级分辨率的血管内光学相干断层扫描(OCT)可在体内准确评估支架贴壁/贴壁不良以及新生内膜覆盖情况。然而,手动进行支架分析既费力又耗时。现有的血管内OCT自动分析方法主要集中在组织覆盖较薄的支架支柱上。我们开发了一种深度学习方法,可自动分析组织覆盖薄(≤0.3mm)和非常厚(>0.3mm)的支架,并开发了一种算法,用于准确分析有多个支架的血管的支架面积。对来自56次OCT回撤和41名患者的25203张图像进行了分析。三重交叉验证表明,对于组织覆盖≤0.3mm的支架,该算法的精度为0.932±0.009,灵敏度为0.939±0.007;对于组织覆盖>0.3mm的支架,精度为0.856±0.019,灵敏度为0.874±0.011。对于单支架血管,自动计算的支架面积与手动测量的支架面积之间的相关性为0.954(p<0.0001),对于植入多个支架的血管,相关性为0.918(p<0.0001)。所提出的方法可以准确检测组织覆盖非常厚的支架支柱,并分析植入多个支架的血管的支架面积,并且可以有效地促进对支架植入和支架后组织覆盖情况的评估。

相似文献

1
Stent detection with very thick tissue coverage in intravascular OCT.
Biomed Opt Express. 2021 Nov 11;12(12):7500-7516. doi: 10.1364/BOE.444336. eCollection 2021 Dec 1.
3
Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage.
Int J Cardiovasc Imaging. 2012 Feb;28(2):229-41. doi: 10.1007/s10554-011-9824-3. Epub 2011 Feb 24.

引用本文的文献

1
Harnessing Artificial Intelligence for Innovation in Interventional Cardiovascular Care.
J Soc Cardiovasc Angiogr Interv. 2025 Mar 18;4(3Part B):102562. doi: 10.1016/j.jscai.2025.102562. eCollection 2025 Mar.
2
Artificial intelligence for the analysis of intracoronary optical coherence tomography images: a systematic review.
Eur Heart J Digit Health. 2025 Jan 28;6(2):270-284. doi: 10.1093/ehjdh/ztaf005. eCollection 2025 Mar.
4
AI in interventional cardiology: Innovations and challenges.
Heliyon. 2024 Aug 26;10(17):e36691. doi: 10.1016/j.heliyon.2024.e36691. eCollection 2024 Sep 15.
6
Revolutionising Acute Cardiac Care With Artificial Intelligence: Opportunities and Challenges.
Can J Cardiol. 2024 Oct;40(10):1813-1827. doi: 10.1016/j.cjca.2024.06.011. Epub 2024 Jun 18.
9
Identifying health research in the era of COVID-19: A scoping review.
SAGE Open Med. 2023 Jun 8;11:20503121231180030. doi: 10.1177/20503121231180030. eCollection 2023.
10
Advances in Diagnosis, Therapy, and Prognosis of Coronary Artery Disease Powered by Deep Learning Algorithms.
JACC Asia. 2023 Feb 15;3(1):1-14. doi: 10.1016/j.jacasi.2022.12.005. eCollection 2023 Feb.

本文引用的文献

1
Coronary Intravascular Brachytherapy for Recurrent Coronary Drug-Eluting Stent In-Stent Restenosis: A Systematic Review and Meta-Analysis.
Cardiovasc Revasc Med. 2021 Feb;23:28-35. doi: 10.1016/j.carrev.2020.08.035. Epub 2020 Aug 23.
2
Automatic stent reconstruction in optical coherence tomography based on a deep convolutional model.
Biomed Opt Express. 2020 May 29;11(6):3374-3394. doi: 10.1364/BOE.390113. eCollection 2020 Jun 1.
4
Restenosis of Drug-Eluting Stents: A New Classification System Based on Disease Mechanism to Guide Treatment and State-of-the-Art Review.
Circ Cardiovasc Interv. 2019 Aug;12(8):e007023. doi: 10.1161/CIRCINTERVENTIONS.118.007023. Epub 2019 Jul 26.
5
Automated stent coverage analysis in intravascular OCT (IVOCT) image volumes using a support vector machine and mesh growing.
Biomed Opt Express. 2019 May 16;10(6):2809-2828. doi: 10.1364/BOE.10.002809. eCollection 2019 Jun 1.
6
CE-Net: Context Encoder Network for 2D Medical Image Segmentation.
IEEE Trans Med Imaging. 2019 Oct;38(10):2281-2292. doi: 10.1109/TMI.2019.2903562. Epub 2019 Mar 7.
7
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
8
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848. doi: 10.1109/TPAMI.2017.2699184. Epub 2017 Apr 27.
9
Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease.
N Engl J Med. 2016 Dec 15;375(24):2349-2358. doi: 10.1056/NEJMoa1605086. Epub 2016 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验