Wu Peng, Gutiérrez-Chico Juan Luis, Tauzin Hélène, Yang Wei, Li Yingguang, Yu Wei, Chu Miao, Guillon Benoît, Bai Jingfeng, Meneveau Nicolas, Wijns William, Tu Shengxian
Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 1954 Hua Shan Road, 200030 Shanghai, China.
Department of Interventional Cardiology, Campo de Gibraltar Health Trust, 11207 - Algeciras, Spain.
Biomed Opt Express. 2020 May 29;11(6):3374-3394. doi: 10.1364/BOE.390113. eCollection 2020 Jun 1.
Intravascular optical coherence tomography (IVOCT) can accurately assess stent apposition and expansion, thus enabling the optimisation of a stenting procedure to minimize the risk of device failure. This paper presents a deep convolutional based model for automatic detection and segmentation of stent struts. The input of pseudo-3D images aggregated the information from adjacent frames to refine the probability of strut detection. In addition, multi-scale shortcut connections were implemented to minimize the loss of spatial resolution and refine the segmentation of strut contours. After training, the model was independently tested in 21,363 cross-sectional images from 170 IVOCT image pullbacks. The proposed model obtained excellent segmentation (0.907 Dice and 0.838 Jaccard) and detection metrics (0.943 precision, 0.940 recall and 0.936 F1-score), significantly better than conventional features-based algorithms. This performance was robust and homogenous among IVOCT pullbacks with different sources of acquisition (clinical centres, imaging operators, type of stent, time of acquisition and challenging scenarios). In addition, excellent agreement between the model and a commercialized software was observed in the quantification of clinically relevant parameters. In conclusion, the deep-convolutional model can accurately detect stent struts in IVOCT images, thus enabling the fully-automatic quantification of stent parameters in an extremely short time. It might facilitate the application of quantitative IVOCT analysis in real-world clinical scenarios.
血管内光学相干断层扫描(IVOCT)可以准确评估支架贴壁和扩张情况,从而优化支架置入手术,将器械故障风险降至最低。本文提出了一种基于深度卷积的模型,用于自动检测和分割支架支柱。伪3D图像的输入聚合了相邻帧的信息,以提高支柱检测的概率。此外,还采用了多尺度捷径连接,以尽量减少空间分辨率的损失,并细化支柱轮廓的分割。训练后,该模型在来自170次IVOCT图像回撤的21363张横截面图像上进行了独立测试。所提出的模型获得了出色的分割结果(Dice系数为0.907,Jaccard系数为0.838)和检测指标(精确率为0.943,召回率为0.940,F1分数为0.936),明显优于传统的基于特征的算法。在不同采集来源(临床中心、成像操作人员、支架类型、采集时间和具有挑战性的场景)的IVOCT回撤中,这种性能具有稳健性和同质性。此外,在临床相关参数的量化方面,该模型与一款商业化软件之间观察到了出色的一致性。总之,深度卷积模型可以准确检测IVOCT图像中的支架支柱,从而在极短时间内实现支架参数的全自动量化。它可能会促进定量IVOCT分析在实际临床场景中的应用。