Suppr超能文献

结合机器学习的波强度分析能够在心力衰竭模拟中检测到每搏输出量受损。

Wave Intensity Analysis Combined With Machine Learning can Detect Impaired Stroke Volume in Simulations of Heart Failure.

作者信息

Reavette Ryan M, Sherwin Spencer J, Tang Meng-Xing, Weinberg Peter D

机构信息

Department of Bioengineering, Imperial College London, London, United Kingdom.

Department of Aeronautics, Imperial College London, London, United Kingdom.

出版信息

Front Bioeng Biotechnol. 2021 Dec 24;9:737055. doi: 10.3389/fbioe.2021.737055. eCollection 2021.

Abstract

Heart failure is treatable, but in the United Kingdom, the 1-, 5- and 10-year mortality rates are 24.1, 54.5 and 75.5%, respectively. The poor prognosis reflects, in part, the lack of specific, simple and affordable diagnostic techniques; the disease is often advanced by the time a diagnosis is made. Previous studies have demonstrated that certain metrics derived from pressure-velocity-based wave intensity analysis are significantly altered in the presence of impaired heart performance when averaged over groups, but to date, no study has examined the diagnostic potential of wave intensity on an individual basis, and, additionally, the pressure waveform can only be obtained accurately using invasive methods, which has inhibited clinical adoption. Here, we investigate whether a new form of wave intensity based on noninvasive measurements of arterial diameter and velocity can detect impaired heart performance in an individual. To do so, we have generated a virtual population of two-thousand elderly subjects, modelling half as healthy controls and half with an impaired stroke volume. All metrics derived from the diameter-velocity-based wave intensity waveforms in the carotid, brachial and radial arteries showed significant crossover between groups-no one metric in any artery could reliably indicate whether a subject's stroke volume was normal or impaired. However, after applying machine learning to the metrics, we found that a support vector classifier could simultaneously achieve up to 99% recall and 95% precision. We conclude that noninvasive wave intensity analysis has significant potential to improve heart failure screening and diagnosis.

摘要

心力衰竭是可治疗的,但在英国,1年、5年和10年死亡率分别为24.1%、54.5%和75.5%。预后不佳部分反映了缺乏特异性、简单且经济实惠的诊断技术;该疾病在确诊时往往已发展到晚期。先前的研究表明,基于压力 - 速度的波强度分析得出的某些指标在心脏功能受损时,按组平均会有显著变化,但迄今为止,尚无研究在个体层面上检验波强度的诊断潜力,此外,压力波形只能通过侵入性方法准确获取,这限制了其临床应用。在此,我们研究基于动脉直径和速度的非侵入性测量的一种新的波强度形式是否能够检测个体的心脏功能受损情况。为此,我们生成了一个由两千名老年受试者组成的虚拟群体,将其中一半模拟为健康对照,另一半模拟为每搏量受损。从颈动脉、肱动脉和桡动脉基于直径 - 速度的波强度波形得出的所有指标在两组之间均显示出显著交叉——任何动脉中的任何一个指标都无法可靠地表明受试者的每搏量是正常还是受损。然而,在将机器学习应用于这些指标后,我们发现支持向量分类器能够同时实现高达99%的召回率和95%的精确率。我们得出结论,非侵入性波强度分析在改善心力衰竭筛查和诊断方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0d4/8740183/537969b431f2/fbioe-09-737055-g001.jpg

相似文献

1
Wave Intensity Analysis Combined With Machine Learning can Detect Impaired Stroke Volume in Simulations of Heart Failure.
Front Bioeng Biotechnol. 2021 Dec 24;9:737055. doi: 10.3389/fbioe.2021.737055. eCollection 2021.
2
Detecting heart failure from B-mode ultrasound characterization of arterial pulse waves.
Am J Physiol Heart Circ Physiol. 2024 Jul 1;327(1):H80-H88. doi: 10.1152/ajpheart.00219.2024. Epub 2024 May 24.
4
Comparison of arterial wave intensity analysis by pressure-velocity and diameter-velocity methods in a virtual population of adult subjects.
Proc Inst Mech Eng H. 2020 Nov;234(11):1260-1276. doi: 10.1177/0954411920926094. Epub 2020 Jul 10.
5
Vascular Age Assessed From an Uncalibrated, Noninvasive Pressure Waveform by Using a Deep Learning Approach: The AI-VascularAge Model.
Hypertension. 2024 Jan;81(1):193-201. doi: 10.1161/HYPERTENSIONAHA.123.21638. Epub 2023 Oct 30.
7
Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis.
Am J Physiol Heart Circ Physiol. 2005 Jul;289(1):H270-6. doi: 10.1152/ajpheart.00636.2003. Epub 2005 Feb 18.
8
A spectral machine learning approach to derive central aortic pressure waveforms from a brachial cuff.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2416006122. doi: 10.1073/pnas.2416006122. Epub 2025 Feb 26.
10
Reservoir-wave separation and wave intensity analysis applied to carotid arteries: a hybrid 1D model to understand haemodynamics.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1381-4. doi: 10.1109/IEMBS.2008.4649422.

引用本文的文献

1
Applications of machine and deep learning to thyroid cytology and histopathology: a review.
Front Oncol. 2023 Nov 7;13:958310. doi: 10.3389/fonc.2023.958310. eCollection 2023.

本文引用的文献

1
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.
Eur Heart J. 2021 Sep 21;42(36):3599-3726. doi: 10.1093/eurheartj/ehab368.
2
Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms.
PLoS One. 2021 Jun 28;16(6):e0245026. doi: 10.1371/journal.pone.0245026. eCollection 2021.
5
Comparison of arterial wave intensity analysis by pressure-velocity and diameter-velocity methods in a virtual population of adult subjects.
Proc Inst Mech Eng H. 2020 Nov;234(11):1260-1276. doi: 10.1177/0954411920926094. Epub 2020 Jul 10.
7
Support vector machine based classification of smokers and nonsmokers using diffusion tensor imaging.
Brain Imaging Behav. 2020 Dec;14(6):2242-2250. doi: 10.1007/s11682-019-00176-7.
10
Noninvasive wave intensity analysis predicts functional worsening in children with pulmonary arterial hypertension.
Am J Physiol Heart Circ Physiol. 2018 Oct 1;315(4):H968-H977. doi: 10.1152/ajpheart.00227.2018. Epub 2018 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验