Suppr超能文献

将木质生物质转化为酚类单体和碳量子点的集成级联生物精炼工艺

Integrated Cascade Biorefinery Processes to Transform Woody Biomass Into Phenolic Monomers and Carbon Quantum Dots.

作者信息

Chen Xue, Zhu Jiubin, Song Wenlu, Xiao Ling-Ping

机构信息

Department of Life Science and Engineering, Jining University, Jining, China.

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China.

出版信息

Front Bioeng Biotechnol. 2021 Dec 23;9:803138. doi: 10.3389/fbioe.2021.803138. eCollection 2021.

Abstract

A novel cascade biorefinery strategy toward phenolic monomers and carbon quantum dots (CQDs) is proposed here coupling catalytic hydrogenolysis and hydrothermal treatment. Birch wood was first treated with catalytic hydrogenolysis to afford a high yield of monomeric phenols (44.6 wt%), in which 4-propanol guaiacol (10.2 wt%) and 4-propanol syringol (29.7 wt%) were identified as the two major phenolic products with 89% selectivity. An available carbohydrate pulp retaining 82.4% cellulose and 71.6% hemicellulose was also obtained simultaneously, which was further used for the synthesis of CQDs by a one-step hydrothermal process. The as-prepared CQDs exhibited excellent selectivity and detection limits for several heavy metal cations, especially for Fe ions in an aqueous solution. Those cost-efficient CQDs showed great potential in fluorescent sensor environmental analyses. These findings provide a promising path toward developing high-performance sensors on environmental monitoring and a new route for the high value-added utilization of lignocellulosic biomass.

摘要

本文提出了一种将催化氢解和水热处理相结合的新型级联生物精炼策略,用于制备酚类单体和碳量子点(CQD)。首先对桦木进行催化氢解处理,以高产率获得单体酚(44.6 wt%),其中4-丙醇愈创木酚(10.2 wt%)和4-丙醇丁香酚(29.7 wt%)被确定为两种主要酚类产物,选择性达89%。同时还获得了一种保留82.4%纤维素和71.6%半纤维素的可用碳水化合物纸浆,该纸浆进一步用于通过一步水热法合成CQD。所制备的CQD对几种重金属阳离子表现出优异的选择性和检测限,特别是对水溶液中的铁离子。这些具有成本效益的CQD在荧光传感器环境分析中显示出巨大潜力。这些发现为开发用于环境监测的高性能传感器提供了一条有前景的途径,并为木质纤维素生物质的高附加值利用开辟了一条新路线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8215/8733694/59c91afa7627/fbioe-09-803138-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验