Suppr超能文献

芯片上的糖基化:一种用于无细胞糖蛋白生物合成的基于流动的微流体系统。

Glycosylation-on-a-Chip: A Flow-Based Microfluidic System for Cell-Free Glycoprotein Biosynthesis.

作者信息

Aquino Alicia K, Manzer Zachary A, Daniel Susan, DeLisa Matthew P

机构信息

Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States.

Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, United States.

出版信息

Front Mol Biosci. 2021 Dec 23;8:782905. doi: 10.3389/fmolb.2021.782905. eCollection 2021.

Abstract

In recent years, cell-free synthetic glycobiology technologies have emerged that enable production and remodeling of glycoproteins outside the confines of the cell. However, many of these systems combine multiple synthesis steps into one pot where there can be competing reactions and side products that ultimately lead to low yield of the desired product. In this work, we describe a microfluidic platform that integrates cell-free protein synthesis, glycosylation, and purification of a model glycoprotein in separate compartments where each step can be individually optimized. Microfluidics offer advantages such as reaction compartmentalization, tunable residence time, the ability to tether enzymes for reuse, and the potential for continuous manufacturing. Moreover, it affords an opportunity for spatiotemporal control of glycosylation reactions that is difficult to achieve with existing cell-based and cell-free glycosylation systems. In this work, we demonstrate a flow-based glycoprotein synthesis system that promotes enhanced cell-free protein synthesis, efficient protein glycosylation with an immobilized oligosaccharyltransferase, and enrichment of the protein product from cell-free lysate. Overall, this work represents a first-in-kind glycosylation-on-a-chip prototype that could find use as a laboratory tool for mechanistic dissection of the protein glycosylation process as well as a biomanufacturing platform for small batch, decentralized glycoprotein production.

摘要

近年来,无细胞合成糖生物学技术应运而生,能够在细胞外生产和重塑糖蛋白。然而,这些系统中的许多都将多个合成步骤合并在一个反应体系中,可能会发生竞争反应并产生副产物,最终导致目标产物产量较低。在这项工作中,我们描述了一种微流控平台,该平台在不同的隔室中整合了无细胞蛋白质合成、糖基化和一种模型糖蛋白的纯化,每个步骤都可以单独优化。微流控技术具有诸多优势,如反应分区、可调节的停留时间、固定化酶可重复使用的能力以及连续制造的潜力。此外,它为糖基化反应的时空控制提供了机会,这是现有基于细胞和无细胞糖基化系统难以实现的。在这项工作中,我们展示了一种基于流动的糖蛋白合成系统,该系统促进了增强的无细胞蛋白质合成、利用固定化寡糖基转移酶进行高效蛋白质糖基化以及从无细胞裂解物中富集蛋白质产物。总体而言,这项工作代表了首个芯片上糖基化原型,可作为蛋白质糖基化过程机理剖析的实验室工具以及用于小批量、分散式糖蛋白生产的生物制造平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e82/8733600/af6f0f151130/fmolb-08-782905-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验