Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
Nat Commun. 2018 Jul 12;9(1):2686. doi: 10.1038/s41467-018-05110-x.
The emerging discipline of bacterial glycoengineering has made it possible to produce designer glycans and glycoconjugates for use as vaccines and therapeutics. Unfortunately, cell-based production of homogeneous glycoproteins remains a significant challenge due to cell viability constraints and the inability to control glycosylation components at precise ratios in vivo. To address these challenges, we describe a novel cell-free glycoprotein synthesis (CFGpS) technology that seamlessly integrates protein biosynthesis with asparagine-linked protein glycosylation. This technology leverages a glyco-optimized Escherichia coli strain to source cell extracts that are selectively enriched with glycosylation components, including oligosaccharyltransferases (OSTs) and lipid-linked oligosaccharides (LLOs). The resulting extracts enable a one-pot reaction scheme for efficient and site-specific glycosylation of target proteins. The CFGpS platform is highly modular, allowing the use of multiple distinct OSTs and structurally diverse LLOs. As such, we anticipate CFGpS will facilitate fundamental understanding in glycoscience and make possible applications in on demand biomanufacturing of glycoproteins.
细菌糖基工程这一新兴学科使得人们能够生产用于疫苗和治疗的设计糖链和糖缀合物。不幸的是,由于细胞活力的限制以及无法在体内精确控制糖基化成分的比例,基于细胞的均一糖蛋白生产仍然是一个重大挑战。为了解决这些挑战,我们描述了一种新型的无细胞糖蛋白合成(CFGpS)技术,该技术将蛋白质生物合成与天冬酰胺连接的蛋白质糖基化无缝集成。该技术利用糖基优化的大肠杆菌菌株来提供细胞提取物,该提取物选择性地富含糖基化成分,包括寡糖基转移酶(OST)和脂-linked oligosaccharides(LLO)。由此产生的提取物能够实现高效和定点糖基化目标蛋白的一锅反应方案。CFGpS 平台具有高度的模块化,允许使用多种不同的 OST 和结构多样的 LLO。因此,我们预计 CFGpS 将促进糖科学的基础研究,并有可能实现按需生产糖蛋白的应用。