Gaines Jessica L, Kim Kwang S, Parrell Benjamin, Ramanarayanan Vikram, Nagarajan Srikantan S, Houde John F
Graduate Program in Bioengineering, University of California Berkeley-University of California San Francisco, California 94143, USA.
Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California 94143, USA.
JASA Express Lett. 2021 Dec;1(12):124402. doi: 10.1121/10.0009058. Epub 2021 Dec 28.
The Maeda model was used to generate a large set of vocoid-producing vocal tract configurations. The resulting dataset (a) produced a comprehensive range of formant frequencies and (b) displayed discrete tongue body constriction locations (palatal, velar/uvular, and lower pharyngeal). The discrete parameterization of constriction location across the vowel space suggests this is likely a fundamental characteristic of the human vocal tract, and not limited to any specific set of vowel contrasts. These findings suggest that in addition to established articulatory-acoustic constraints, fundamental biomechanical constraints of the vocal tract may also explain such discreteness.
前田模型被用于生成大量产生元音的声道构型。所得数据集(a)产生了全面的共振峰频率范围,并且(b)显示了离散的舌体收缩位置(腭部、软腭/小舌和下咽)。整个元音空间中收缩位置的离散参数化表明,这可能是人类声道的一个基本特征,而不限于任何特定的元音对比集。这些发现表明,除了已确立的发音-声学限制外,声道的基本生物力学限制也可能解释这种离散性。