Department of General Microbiology, Institute of Microbiology Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Institute of Chemistry, Postgraduate Program in Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
J Biol Inorg Chem. 2022 Feb;27(1):201-213. doi: 10.1007/s00775-021-01922-3. Epub 2022 Jan 10.
Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)]ClO (Ag-phendione) and Cu(1,10-phenanthroline-5,6-dione).4HO (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (- 7.9 kcal/mol) or minor (- 7.2 kcal/mol) DNA grooves. In vitro competitive quenching assays involving duplex DNA with Hoechst 33258 or ethidium bromide demonstrated that Ag-phendione and Cu-phendione preferentially bind DNA in the minor grooves. The competitive ethidium bromide displacement technique revealed Cu-phendione has a higher binding affinity to DNA (K = 2.55 × 10 M) than Ag-phendione (K = 2.79 × 10 M) and phendione (K = 1.33 × 10 M). Cu-phendione induced topoisomerase I-mediated DNA relaxation of supercoiled plasmid DNA. Moreover, Cu-phendione was able to induce oxidative DNA injuries with the addition of free radical scavengers inhibiting DNA damage. Ag-phendione and Cu-phendione avidly displaced propidium iodide bound to DNA in permeabilized Pseudomonas aeruginosa cells in a dose-dependent manner as judged by flow cytometry. The treatment of P. aeruginosa with bactericidal concentrations of Cu-phendione (15 µM) induced DNA fragmentation as visualized by either agarose gel or TUNEL assays. Altogether, these results highlight a possible novel DNA-targeted mechanism by which phendione-containing complexes, in part, elicit toxicity toward the multidrug-resistant pathogen P. aeruginosa.
解决微生物耐药性问题需要不断努力开发具有新型作用机制和强大抗菌活性的新分子。我们的团队之前已经鉴定出具有高效抗多药耐药物种作用的金属基化合物[Ag(1,10-邻菲咯啉-5,6-二酮)]ClO(Ag-邻菲咯啉)和Cu(1,10-邻菲咯啉-5,6-二酮)4HO(Cu-邻菲咯啉)。在此,我们采用体内和体外相结合的方法研究了 Ag-邻菲咯啉和 Cu-邻菲咯啉与双链 DNA 结合的能力。分子对接表明,这两种邻菲咯啉衍生物都可以通过氢键、疏水相互作用和静电相互作用与 DNA 相互作用。Cu-邻菲咯啉与主要 (-7.9 kcal/mol)或次要 (-7.2 kcal/mol)DNA 沟都具有最高的结合亲和力。体外竞争性荧光猝灭实验涉及与 Hoechst 33258 或溴化乙锭结合的双链 DNA 表明,Ag-邻菲咯啉和 Cu-邻菲咯啉优先与 DNA 的小沟结合。竞争性溴化乙锭置换技术表明,Cu-邻菲咯啉与 DNA 的结合亲和力高于 Ag-邻菲咯啉(K=2.55×10M)和邻菲咯啉(K=1.33×10M)。Cu-邻菲咯啉诱导拓扑异构酶 I 介导的超螺旋质粒 DNA 松弛。此外,Cu-邻菲咯啉能够在添加自由基清除剂抑制 DNA 损伤的情况下诱导氧化 DNA 损伤。Ag-邻菲咯啉和 Cu-邻菲咯啉能够以剂量依赖的方式置换碘化丙啶与通透性假单胞菌细胞中 DNA 的结合,这可通过流式细胞术判断。用杀菌浓度的 Cu-邻菲咯啉(15 µM)处理铜绿假单胞菌可诱导 DNA 片段化,琼脂糖凝胶或 TUNEL 实验均可观察到这一现象。总之,这些结果突出了一种可能的新型 DNA 靶向机制,部分解释了含邻菲咯啉的配合物对多药耐药病原体铜绿假单胞菌产生毒性的机制。