文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载神经生长因子各向异性丝素纳米纤维水凝胶调控神经元/星形胶质细胞分化实现脊髓无痕修复。

Nerve Growth Factor-Laden Anisotropic Silk Nanofiber Hydrogels to Regulate Neuronal/Astroglial Differentiation for Scarless Spinal Cord Repair.

机构信息

National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.

Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2022 Jan 26;14(3):3701-3715. doi: 10.1021/acsami.1c19229. Epub 2022 Jan 10.


DOI:10.1021/acsami.1c19229
PMID:35006667
Abstract

Scarless spinal cord regeneration remains a challenge due to the complicated microenvironment at lesion sites. In this study, the nerve growth factor (NGF) was immobilized in silk protein nanofiber hydrogels with hierarchical anisotropic microstructures to fabricate bioactive systems that provide multiple physical and biological cues to address spinal cord injury (SCI). The NGF maintained bioactivity inside the hydrogels and regulated the neuronal/astroglial differentiation of neural stem cells. The aligned microstructures facilitated the migration and orientation of cells, which further stimulated angiogenesis and neuron extensions both and . In a severe rat long-span hemisection SCI model, these hydrogel matrices reduced scar formation and achieved the scarless repair of the spinal cord and effective recovery of motor functions. Histological analysis confirmed the directional regenerated neuronal tissues, with a similar morphology to that of the normal spinal cord. The and results showed promising utility for these NGF-laden silk hydrogels for spinal cord regeneration while also demonstrating the feasibility of cell-free bioactive matrices with multiple cues to regulate endogenous cell responses.

摘要

由于损伤部位的复杂微环境,实现无痕脊髓再生仍然是一个挑战。在这项研究中,神经生长因子(NGF)被固定在具有分级各向异性微观结构的丝素蛋白纳米纤维水凝胶中,以构建提供多种物理和生物线索的生物活性系统,从而解决脊髓损伤(SCI)问题。NGF 在水凝胶内保持生物活性,并调节神经干细胞的神经元/星形胶质细胞分化。排列的微观结构促进了细胞的迁移和定向,进一步刺激了血管生成和神经元延伸。在严重的大鼠长节段半切 SCI 模型中,这些水凝胶基质减少了疤痕形成,实现了脊髓的无痕修复和运动功能的有效恢复。组织学分析证实了定向再生的神经元组织,其形态与正常脊髓相似。 和 结果表明,这些负载 NGF 的丝素水凝胶在脊髓再生方面具有广阔的应用前景,同时也证明了具有多种线索的无细胞生物活性基质调节内源性细胞反应的可行性。

相似文献

[1]
Nerve Growth Factor-Laden Anisotropic Silk Nanofiber Hydrogels to Regulate Neuronal/Astroglial Differentiation for Scarless Spinal Cord Repair.

ACS Appl Mater Interfaces. 2022-1-26

[2]
Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury.

Acta Biomater. 2023-3-1

[3]
Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury.

Acta Biomater. 2016-1

[4]
Asiaticoside-laden silk nanofiber hydrogels to regulate inflammation and angiogenesis for scarless skin regeneration.

Biomater Sci. 2021-7-27

[5]
Coaxial 3D printing of hierarchical structured hydrogel scaffolds for on-demand repair of spinal cord injury.

Acta Biomater. 2023-9-15

[6]
Complementary effects of two growth factors in multifunctionalized silk nanofibers for nerve reconstruction.

PLoS One. 2014-10-14

[7]
The Porous SilMA Hydrogel Scaffolds Carrying Dual-Sensitive Paclitaxel Nanoparticles Promote Neuronal Differentiation for Spinal Cord Injury Repair.

Tissue Eng Regen Med. 2024-8

[8]
Thermo-sensitive electroactive hydrogel combined with electrical stimulation for repair of spinal cord injury.

J Nanobiotechnology. 2021-9-23

[9]
Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair.

Acta Biomater. 2022-10-1

[10]
Injectable silk nanofiber hydrogels as stem cell carriers to accelerate wound healing.

J Mater Chem B. 2021-9-29

引用本文的文献

[1]
Bioactive Hydrogels for Spinal Cord Injury Repair: Emphasis on Gelatin and Its Derivatives.

Gels. 2025-6-26

[2]
Antioxidant nanozymes: current status and future perspectives in spinal cord injury treatments.

Theranostics. 2025-5-8

[3]
Exosomes: a promising microenvironment modulator for spinal cord injury treatment.

Int J Biol Sci. 2025-6-5

[4]
Advancements in the Field of Protein-Based Hydrogels: Main Types, Characteristics, and Their Applications.

Gels. 2025-4-22

[5]
Traumatic spinal cord injury: a review of the current state of art and future directions - what do we know and where are we going?

N Am Spine Soc J. 2025-3-5

[6]
Biomaterial-based strategies: a new era in spinal cord injury treatment.

Neural Regen Res. 2025-12-1

[7]
Hydrogel loaded with cerium-manganese nanoparticles and nerve growth factor enhances spinal cord injury repair by modulating immune microenvironment and promoting neuronal regeneration.

J Nanobiotechnology. 2025-1-20

[8]
Dual-phase SilMA hydrogel: a dynamic scaffold for sequential drug release and enhanced spinal cord repair via neural differentiation and immunomodulation.

Front Bioeng Biotechnol. 2024-11-21

[9]
Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review.

Medicina (Kaunas). 2024-8-24

[10]
Silk fibroin hydrogels for biomedical applications.

Smart Med. 2022-12-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索