West Coast Metabolomics Center, UC Davis Genome Center, University of California, 451 Health Sciences Drive, Davis, California 95616, United States.
Department of Chemistry, University of California, 1 Shields Ave., Davis, California 95616, United States.
Anal Chem. 2022 Jan 25;94(3):1559-1566. doi: 10.1021/acs.analchem.1c02838. Epub 2022 Jan 10.
Chemical derivatization, especially silylation, is widely used in gas chromatography coupled to mass spectrometry (GC-MS). By introducing the trimethylsilyl (TMS) group to substitute active hydrogens in the molecule, thermostable volatile compounds are created that can be easily analyzed. While large GC-MS libraries are available, the number of spectra for TMS-derivatized compounds is comparatively small. In addition, many metabolites cannot be purchased to produce authentic library spectra. Therefore, computationally generated in silico mass spectral databases need to take TMS derivatizations into account for metabolomics. The quantum chemistry method QCEIMS is an automatic method to generate electron ionization (EI) mass spectra directly from compound structures. To evaluate the performance of the QCEIMS method for TMS-derivatized compounds, we chose 816 trimethylsilyl derivatives of organic acids, alcohols, amides, amines, and thiols to compare in silico-generated spectra against the experimental EI mass spectra from the NIST17 library. Overall, in silico spectra showed a weighted dot score similarity (1000 is maximum) of 635 compared to the NIST17 experimental spectra. Aromatic compounds yielded a better prediction accuracy with an average similarity score of 808, while oxygen-containing molecules showed lower accuracy with only an average score of 609. Such similarity scores are useful for annotation of small molecules in untargeted GC-MS-based metabolomics, suggesting that QCEIMS methods can be extended to compounds that are not present in experimental databases. Despite this overall success, 37% of all experimentally observed ions were not found in QCEIMS predictions. We investigated QCEIMS trajectories in detail and found missed fragmentations in specific rearrangement reactions. Such findings open the way forward for future improvements to the QCEIMS software.
化学衍生化,特别是硅烷化,在气相色谱-质谱联用(GC-MS)中被广泛应用。通过向分子中引入三甲基硅基(TMS)基团来取代活性氢,可以生成热稳定的挥发性化合物,便于分析。虽然有大型 GC-MS 库可供使用,但 TMS 衍生化合物的谱图数量相对较少。此外,许多代谢物无法购买以生成真实的库谱。因此,计算生成的虚拟质谱数据库需要考虑 TMS 衍生化,以用于代谢组学。量子化学方法 QCEIMS 是一种自动方法,可直接从化合物结构生成电子电离(EI)质谱。为了评估 QCEIMS 方法对 TMS 衍生化合物的性能,我们选择了 816 种有机酸、醇、酰胺、胺和硫醇的三甲基硅基衍生物,将虚拟生成的谱图与 NIST17 库中的实验 EI 质谱进行比较。总体而言,与 NIST17 实验谱相比,虚拟谱的加权点得分相似度(1000 为最大值)为 635。芳香族化合物的预测准确性更高,平均相似度得分为 808,而含氧分子的准确性较低,平均得分仅为 609。这种相似度得分对于基于非靶向 GC-MS 的代谢组学中小分子的注释很有用,表明 QCEIMS 方法可以扩展到实验数据库中不存在的化合物。尽管取得了整体成功,但仍有 37%的实验观察到的离子未在 QCEIMS 预测中找到。我们详细研究了 QCEIMS 轨迹,并发现了特定重排反应中缺失的片段化。这些发现为 QCEIMS 软件的未来改进开辟了道路。