Suppr超能文献

具有工程化 OmpG 和双层 MoS 的低噪声混合纳米孔

Low Noise Hybrid Nanopore with Engineered OmpG and Bilayer MoS.

机构信息

Department of Chemical and Materials Engineering, University of Alberta, Edmonton Alberta, Canada.

出版信息

ACS Appl Bio Mater. 2021 Jul 19;4(7):5416-5424. doi: 10.1021/acsabm.1c00095. Epub 2021 Jun 23.

Abstract

Hybrid nanopores combine the durability of a solid-state nanopore with the precise structure of a biological nanopore. When a DNA strand is pulled electrophoretically through a solid-state nanopore it can be sensed using the ionic blockade current produced by each translocating molecule. However, owing to the lack of chemical specificity and pore size reproducibility, solid-state nanopore sensing suffers from poor repeatability. Biological nanopores which have a constant geometry ensure sensitive and repeatable sensing. In this study, hybrid nanopores were formed by insertion of a engineered outer membrane porin G (eOmpG) in a bilayer (BL) molybdenum disulfide (MoS) solid-state nanopore. Engineered outer membrane porin G (eOmpG) is used as the biological counterpart of the hybrid nanopore due to its uniform cylindrical geometry and controlled gating useful for specific detection of label-free analytes. BL MoS is used as the solid-state support for the hybrid construct owing to its surface charge and 2D layered properties, which ensures a stable support with low capacitive noise, favorable for precise sensing. To realize the hybried nanopore a single eOmpG was electrophoretically pulled through a 3.4 nm BL MoS solid-state nanopore at neutral pH and +80 mV trans bias. A hybrid BL MoS-eOmpG nanopore was found to demonstrate 32% lower noise levels with nearly 1.9 times improved in the signal-to-noise ratio (SNR) and 6.5 times longer dwell times for dA30 molecular sensing compared to the BL MoS solid-state nanopore. Thus, the low-noise biocompatible platform of the hybrid BL MoS-eOmpG nanopore can be used for highly resolved biomolecular sensing.

摘要

杂化纳米孔结合了固态纳米孔的耐用性和生物纳米孔的精确结构。当 DNA 链通过固态纳米孔电泳拉伸时,可以使用每个迁移分子产生的离子阻塞电流来检测它。然而,由于缺乏化学特异性和孔尺寸重现性,固态纳米孔传感的重复性较差。具有恒定几何形状的生物纳米孔确保了敏感和可重复的传感。在这项研究中,通过将工程化的外膜孔蛋白 G(eOmpG)插入双层(BL)二硫化钼(MoS)固态纳米孔中形成杂化纳米孔。工程化的外膜孔蛋白 G(eOmpG)用作杂化纳米孔的生物对应物,因为其具有均匀的圆柱形几何形状和受控的门控,可用于对无标记分析物进行特异性检测。BL MoS 用作杂化结构的固态支撑物,因为其表面电荷和 2D 层状特性可确保具有低电容噪声的稳定支撑,有利于精确传感。为了实现杂化纳米孔,在中性 pH 值和+80 mV 跨偏压下,通过 3.4nm BL MoS 固态纳米孔电泳拉制单个 eOmpG。与 BL MoS 固态纳米孔相比,杂化 BL MoS-eOmpG 纳米孔的噪声水平降低了 32%,信号噪声比(SNR)提高了近 1.9 倍,dA30 分子传感的停留时间延长了 6.5 倍。因此,杂化 BL MoS-eOmpG 纳米孔的低噪声生物相容性平台可用于高分辨率生物分子传感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验