Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, United States.
ACS Appl Mater Interfaces. 2020 Jun 10;12(23):26624-26634. doi: 10.1021/acsami.0c04523. Epub 2020 May 26.
Nanopore sequencing of DNA has been enabled by the use of a biological enzyme to thread DNA through an engineered biological nanopore while recording the ionic current flowing through the nanopore. Efforts to realize a similar concept using a solid-state nanopore have been met with several technical challenges, one of which is the high speed of DNA translocation and the other the low ionic current contrast among individual nucleotides. A promising avenue to addressing both problems is using an ionic liquid to slow DNA translocation and a tiny nanopore in the MoS membrane to distinguish individual nucleotides. The physical mechanisms enabling these technical advances have remained elusive. Here, we characterize the ion and DNA transport through the ionic liquid/aqueous electrolyte interface, with and without a MoS nanopore, using the all-atom molecular dynamics method. We find that the partial miscibility of the ionic liquid and the aqueous electrolyte considerably alters the physics of the nanopore translocation process. Thus, the interface of the two phases generates a contact potential of 600 mV, the ionic current is dominated by the motion of ionic liquid molecules through the aqueous solution phase, and the DNA nucleotides exhibit preferential partitioning into the aqueous electrolyte, which leads to spontaneous transport of DNA polymers from the ionic liquid to the aqueous solution compartment in the absence of external voltage bias. The complex physics of the two-phase nanopore system offers a multitude of opportunities for extending the functionality of nanopore-sensing platforms.
纳米孔测序技术通过使用生物酶将 DNA 穿过工程化的生物纳米孔,同时记录流过纳米孔的离子电流来实现。使用固态纳米孔实现类似概念的努力遇到了几个技术挑战,其中一个是 DNA 易位速度快,另一个是单个核苷酸之间的离子电流对比度低。使用离子液体来减缓 DNA 易位速度和 MoS 膜中的微小纳米孔来区分单个核苷酸是解决这两个问题的有前途的途径。实现这些技术进步的物理机制仍然难以捉摸。在这里,我们使用全原子分子动力学方法表征了离子和 DNA 通过离子液体/水电解质界面的传输,有和没有 MoS 纳米孔。我们发现,离子液体和水电解质的部分混溶性极大地改变了纳米孔易位过程的物理性质。因此,两相界面产生 600 mV 的接触电势,离子电流主要由离子液体分子通过水溶液相的运动决定,而 DNA 核苷酸优先分配到水溶液相中,导致 DNA 聚合物在没有外部电压偏置的情况下自发从离子液体向水溶液腔室传输。两相纳米孔系统的复杂物理性质为扩展纳米孔传感平台的功能提供了多种机会。