Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
ACS Appl Bio Mater. 2021 Sep 20;4(9):6865-6873. doi: 10.1021/acsabm.1c00584. Epub 2021 Aug 27.
Recording ion fluctuations surrounding biological cells with a nanoelectronic device offers seamless integration of nanotechnology into living organisms and is essential for understanding cellular activities. The concentration of potassium ion in the extracellular fluid () is a critical determinant of cell membrane potential and must be maintained within an appropriate range. Alteration in can affect neuronal excitability, induce heart arrhythmias, and even trigger seizure-like reactions in the brain. Therefore, monitoring local fluctuations in real time provides an early diagnosis of the occurrence of the K-induced pathophysiological responses. Here, we modified the surface of a silicon nanowire field-effect transistor (SiNW-FET) with K-specific DNA-aptamers (Apt) to monitor the real-time variations of in primary cultured rat embryonic cortical neurons or human embryonic stem cell-derived cardiomyocytes. The binding affinity of Apt to K, determined by measuring the dissociation constant of the Apt-K complex ( = 10.1 ± 0.9 mM), is at least 38-fold higher than other ions (e.g., Na, Ca, and Mg). By placing cultured cortical neurons over an Apt/SiNW-FET device, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulation raised the dose-dependently to 16 mM when AMPA concentration was >10 μM; this elevation could be significantly suppressed by an AMPA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione. Likewise, the stimulation of isoproterenol to cardiomyocytes raised the to 6-8 mM, with a concomitant increase in the beating rate. This study utilizing a robust nanobiosensor to detect real-time ion fluctuations surrounding excitable cells underlies the importance of ion homeostasis and offers the feasibility of developing an implant device for real-time monitoring.
利用纳米电子设备记录围绕生物细胞的离子波动,实现了纳米技术与生物体的无缝集成,对于理解细胞活动至关重要。细胞外液中钾离子的浓度()是细胞膜电位的关键决定因素,必须维持在适当的范围内。的改变会影响神经元的兴奋性,引发心律失常,甚至在大脑中引发类似癫痫的反应。因此,实时监测局部波动可早期诊断 K 诱导的病理生理反应的发生。在这里,我们用钾离子特异性 DNA 适体(Apt)修饰了硅纳米线场效应晶体管(SiNW-FET)的表面,以监测原代培养的大鼠胚胎皮质神经元或人胚胎干细胞来源的心肌细胞中实时的变化。通过测量 Apt-K 复合物的解离常数(= 10.1 ± 0.9 mM)来确定 Apt 与 K 的结合亲和力,其值至少比其他离子(如 Na、Ca 和 Mg)高 38 倍。通过将培养的皮质神经元置于 Apt/SiNW-FET 器件上,当 AMPA 浓度>10 μM 时,AMPA 刺激可将升高至 16 mM,呈浓度依赖性;当用 AMPA 受体拮抗剂 6,7-二硝基喹喔啉-2,3-二酮(6,7-dinitroquinoxaline-2,3-dione)处理时,这种升高可显著受到抑制。同样,异丙肾上腺素刺激心肌细胞可将升高至 6-8 mM,同时心跳频率加快。本研究利用稳健的纳米生物传感器检测兴奋细胞周围实时离子波动,为离子动态平衡的重要性提供了依据,并为开发实时监测的植入式设备提供了可行性。