Suppr超能文献

基于深度学习的 LC-MS 蛋白质组学数据生物标志物检测可解释方法

An Interpretable Deep Learning Approach for Biomarker Detection in LC-MS Proteomics Data.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):151-161. doi: 10.1109/TCBB.2022.3141656. Epub 2023 Feb 3.

Abstract

Analyzing mass spectrometry-based proteomics data with deep learning (DL) approaches poses several challenges due to the high dimensionality, low sample size, and high level of noise. Additionally, DL-based workflows are often hindered to be integrated into medical settings due to the lack of interpretable explanation. We present DLearnMS, a DL biomarker detection framework, to address these challenges on proteomics instances of liquid chromatography-mass spectrometry (LC-MS) - a well-established tool for quantifying complex protein mixtures. Our DLearnMS framework learns the clinical state of LC-MS data instances using convolutional neural networks. Based on the trained neural networks, we show how biomarkers can be identified using layer-wise relevance propagation. This enables detecting discriminating regions of the data and the design of more robust networks. One of the main advantages over other established methods is that no explicit preprocessing step is needed in our DLearnMS framework. Our evaluation shows that DLearnMS outperforms conventional LC-MS biomarker detection approaches in identifying fewer false positive peaks while maintaining a comparable amount of true positives peaks. Code availability: The code is available from the following GIT repository: https://github.com/SaharIravani/DlearnMS.

摘要

使用深度学习 (DL) 方法分析基于质谱的蛋白质组学数据存在一些挑战,这是由于高维性、小样本量和高水平噪声造成的。此外,由于缺乏可解释的解释,基于 DL 的工作流程通常难以集成到医疗环境中。我们提出了 DLearnMS,这是一个 DL 生物标志物检测框架,旨在解决液相色谱-质谱 (LC-MS) 蛋白质组实例中的这些挑战 - LC-MS 是一种用于定量复杂蛋白质混合物的成熟工具。我们的 DLearnMS 框架使用卷积神经网络学习 LC-MS 数据实例的临床状态。基于训练好的神经网络,我们展示了如何使用逐层相关性传播来识别生物标志物。这可以检测数据的区分区域,并设计更稳健的网络。与其他已建立的方法相比,我们的 DLearnMS 框架的主要优势之一是不需要显式的预处理步骤。我们的评估表明,DLearnMS 在识别更少的假阳性峰的同时,能够比传统的 LC-MS 生物标志物检测方法更好地保持可比数量的真阳性峰。代码可用性:该代码可从以下 GIT 存储库获得:https://github.com/SaharIravani/DlearnMS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验