Berlin Institute of Health at Charité, Metabolomics Platform, 10178 Berlin, Germany.
Berlin Institute of Health at Charité, Core Unit Bioinformatics, 10178 Berlin, Germany.
Anal Chem. 2022 Mar 29;94(12):4930-4937. doi: 10.1021/acs.analchem.1c02220. Epub 2022 Mar 15.
Available automated methods for peak detection in untargeted metabolomics suffer from poor precision. We present NeatMS, which uses machine learning based on a convoluted neural network to reduce the number and fraction of false peaks. NeatMS comes with a pre-trained model representing expert knowledge in the differentiation of true chemical signal from noise. Furthermore, it provides all necessary functions to easily train new models or improve existing ones by transfer learning. Thus, the tool improves peak curation and contributes to the robust and scalable analysis of large-scale experiments. We show how to integrate it into different liquid chromatography-mass spectrometry (LC-MS) analysis workflows, quantify its performance, and compare it to various other approaches. NeatMS software is available as open source on github under permissive MIT license and is also provided as easy-to-install PyPi and Bioconda packages.
现有的非靶向代谢组学峰检测自动化方法存在精度差的问题。我们提出了 NeatMS,它使用基于卷积神经网络的机器学习来减少假峰的数量和比例。NeatMS 配备了一个预训练模型,代表了从噪声中区分真实化学信号的专家知识。此外,它还提供了所有必要的功能,可通过迁移学习轻松训练新模型或改进现有模型。因此,该工具提高了峰度的管理,有助于大规模实验的稳健和可扩展分析。我们展示了如何将其集成到不同的液相色谱-质谱 (LC-MS) 分析工作流程中,量化其性能,并将其与各种其他方法进行比较。NeatMS 软件可在 github 上以宽松的 MIT 许可证作为开源使用,也可作为易于安装的 PyPi 和 Bioconda 包提供。