Univ. Lille, CNRS, Inserm, CHU Lille, Institut pour la Recherche sur le Cancer de Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, 59000 Lille, France.
Int J Mol Sci. 2021 Dec 22;23(1):109. doi: 10.3390/ijms23010109.
Mitochondrial dysfunctions are implicated in several pathologies, such as metabolic, cardiovascular, respiratory, and neurological diseases, as well as in cancer and aging. These metabolic alterations are usually assessed in human or murine samples by mitochondrial respiratory chain enzymatic assays, by measuring the oxygen consumption of intact mitochondria isolated from tissues, or from cells obtained after physical or enzymatic disruption of the tissues. However, these methodologies do not maintain tissue multicellular organization and cell-cell interactions, known to influence mitochondrial metabolism. Here, we develop an optimal model to measure mitochondrial oxygen consumption in heart and lung tissue samples using the XF24 Extracellular Flux Analyzer (Seahorse) and discuss the advantages and limitations of this technological approach. Our results demonstrate that tissue organization, as well as mitochondrial ultrastructure and respiratory function, are preserved in heart and lung tissues freshly processed or after overnight conservation at 4 °C. Using this method, we confirmed the repeatedly reported obesity-associated mitochondrial dysfunction in the heart and extended it to the lungs. We set up and validated a new strategy to optimally assess mitochondrial function in murine tissues. As such, this method is of great potential interest for monitoring mitochondrial function in cohort samples.
线粒体功能障碍与多种病理学有关,如代谢、心血管、呼吸和神经疾病,以及癌症和衰老。这些代谢变化通常通过线粒体呼吸链酶测定法在人体或鼠类样本中进行评估,通过测量从组织中分离的完整线粒体的耗氧量,或通过物理或酶破坏组织后获得的细胞来测量。然而,这些方法不能维持组织的多细胞结构和细胞间相互作用,已知这些因素会影响线粒体代谢。在这里,我们使用 Seahorse XF24 细胞外通量分析仪开发了一种优化的模型来测量心脏和肺组织样本中的线粒体耗氧量,并讨论了这种技术方法的优点和局限性。我们的结果表明,组织的结构,以及线粒体的超微结构和呼吸功能,在新鲜处理或在 4°C 下过夜保存的心脏和肺组织中得以保留。使用这种方法,我们证实了先前报道的肥胖相关的心脏中线粒体功能障碍,并将其扩展到了肺部。我们建立并验证了一种新的策略,以优化评估鼠类组织中的线粒体功能。因此,这种方法对于监测队列样本中的线粒体功能具有很大的潜力。