Gutiérrez-Merino Carlos, Martínez-Costa Oscar H, Monsalve Maria, Samhan-Arias Alejandro K
Department of Biochemistry and Molecular Biology, Faculty of Sciences and Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, Av. Elvas S/N, 06006 Badajoz, Spain.
Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain.
Int J Mol Sci. 2021 Dec 23;23(1):118. doi: 10.3390/ijms23010118.
Membrane cytochrome reductase is a pleiotropic oxidoreductase that uses primarily soluble reduced nicotinamide adenine dinucleotide (NADH) as an electron donor to reduce multiple biological acceptors localized in cellular membranes. Some of the biological acceptors of the reductase and coupled redox proteins might eventually transfer electrons to oxygen to form reactive oxygen species. Additionally, an inefficient electron transfer to redox acceptors can lead to electron uncoupling and superoxide anion formation by the reductase. Many efforts have been made to characterize the involved catalytic domains in the electron transfer from the reduced flavoprotein to its electron acceptors, such as cytochrome , through a detailed description of the flavin and NADH-binding sites. This information might help to understand better the processes and modifications involved in reactive oxygen formation by the cytochrome reductase. Nevertheless, more than half a century since this enzyme was first purified, the one-electron transfer process toward potential electron acceptors of the reductase is still only partially understood. New advances in computational analysis of protein structures allow predicting the intramolecular protein dynamics, identifying potential functional sites, or evaluating the effects of microenvironment changes in protein structure and dynamics. We applied this approach to characterize further the roles of amino acid domains within cytochrome reductase structure, part of the catalytic domain, and several sensors and structural domains involved in the interactions with cytochrome and other electron acceptors. The computational analysis results allowed us to rationalize some of the available spectroscopic data regarding ligand-induced conformational changes leading to an increase in the flavin adenine dinucleotide (FAD) solvent-exposed surface, which has been previously correlated with the formation of complexes with electron acceptors.
膜细胞色素还原酶是一种多效氧化还原酶,主要利用可溶性还原型烟酰胺腺嘌呤二核苷酸(NADH)作为电子供体,来还原位于细胞膜中的多种生物受体。该还原酶的一些生物受体以及偶联的氧化还原蛋白最终可能会将电子传递给氧,以形成活性氧。此外,向氧化还原受体的低效电子转移可导致还原酶发生电子解偶联并形成超氧阴离子。人们已经做出了许多努力,通过详细描述黄素和NADH结合位点,来表征从还原型黄素蛋白到其电子受体(如细胞色素)的电子转移过程中所涉及的催化结构域。这些信息可能有助于更好地理解细胞色素还原酶形成活性氧的过程和修饰。然而,自该酶首次纯化以来的半个多世纪里,对其向潜在电子受体的单电子转移过程仍仅部分了解。蛋白质结构计算分析的新进展能够预测分子内蛋白质动力学、识别潜在功能位点,或评估微环境变化对蛋白质结构和动力学的影响。我们应用这种方法进一步表征了细胞色素还原酶结构内氨基酸结构域、部分催化结构域以及参与与细胞色素和其他电子受体相互作用的几个传感器和结构域的作用。计算分析结果使我们能够对一些现有的光谱数据进行合理解释,这些数据涉及配体诱导的构象变化,导致黄素腺嘌呤二核苷酸(FAD)溶剂暴露表面增加,这之前已与与电子受体形成复合物相关联。