Suppr超能文献

生酮饮食可弥补AGC1缺陷并改善髓鞘形成。

The ketogenic diet compensates for AGC1 deficiency and improves myelination.

作者信息

Dahlin Maria, Martin Daniel A, Hedlund Zandra, Jonsson Monica, von Döbeln Ulrika, Wedell Anna

机构信息

Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.

Department of Neuropediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.

出版信息

Epilepsia. 2015 Nov;56(11):e176-81. doi: 10.1111/epi.13193. Epub 2015 Sep 24.

Abstract

The brain aspartate-glutamate carrier (AGC1) is specifically expressed in neurons, where it transports aspartate from the mitochondria to the cytosol, and plays a role in transfer of nicotinamide adenine dinucleotide (NADH)-reducing equivalents into the mitochondria as a part of the malate-aspartate shuttle. Deficient function of AGC1 underlies an inborn error of metabolism that presents with severe hypotonia, arrested psychomotor development, and seizures from a few months of age. In AGC1 deficiency, there is secondary hypomyelination due to lack of N-acetylaspartate (NAA), which is normally generated by acetylation of aspartate in the neuron and required for fatty acid synthesis by the adjacent oligodendrocyte. Based on experiences from AGC2 deficiency, we predicted that reduced glycolysis should compensate for the metabolic defect and allow resumed myelination in AGC1 deficiency. Carbohydrate restriction was therefore initiated in a patient with AGC1 deficiency at 6 years of age by introducing a ketogenic diet. The response was dramatic, clinically as well as radiologically. Psychomotor development showed clear improvement, and magnetic resonance imaging (MRI) indicated resumed myelination. This is the first successful treatment of secondary hypomyelination reported. Because AGC1 is driven by the proton gradient generated by the neuronal mitochondrial respiratory chain, the results have potential relevance for secondary hypomyelination in general.

摘要

脑天冬氨酸 - 谷氨酸载体(AGC1)在神经元中特异性表达,在神经元中它将天冬氨酸从线粒体转运至胞质溶胶,并作为苹果酸 - 天冬氨酸穿梭的一部分,在将烟酰胺腺嘌呤二核苷酸(NADH)还原当量转运至线粒体中发挥作用。AGC1功能缺陷是一种先天性代谢紊乱的基础,表现为严重的肌张力减退、精神运动发育停滞以及从几个月大时就出现癫痫发作。在AGC1缺乏症中,由于缺乏N - 乙酰天冬氨酸(NAA)会出现继发性髓鞘形成减少,NAA通常由神经元中天冬氨酸的乙酰化产生,是相邻少突胶质细胞进行脂肪酸合成所必需的。基于AGC2缺乏症的经验,我们预测糖酵解减少应可弥补代谢缺陷,并使AGC1缺乏症中的髓鞘形成恢复。因此,通过引入生酮饮食,对一名6岁的AGC1缺乏症患者开始进行碳水化合物限制。临床和影像学反应都很显著。精神运动发育有明显改善,磁共振成像(MRI)显示髓鞘形成恢复。这是首次报道的继发性髓鞘形成减少的成功治疗案例。由于AGC1由神经元线粒体呼吸链产生的质子梯度驱动,该结果总体上对继发性髓鞘形成减少具有潜在的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验