Suppr超能文献

基于短时傅里叶变换和深度卷积神经网络对磁巴克豪森噪声瞬态动力学成像的取向硅铁钢识别

Identification of Grain Oriented SiFe Steels Based on Imaging the Instantaneous Dynamics of Magnetic Barkhausen Noise Using Short-Time Fourier Transform and Deep Convolutional Neural Network.

作者信息

Maciusowicz Michal, Psuj Grzegorz, Kochmański Paweł

机构信息

Center for Electromagnetic Fields Engineering and High-Frequency Techniques, Faculty of Electrical Engineering, West Pomeranian University of Technology, ul. Sikorskiego 37, 70-313 Szczecin, Poland.

Department of Materials Technologies, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology Szczecin, Al. Piastów 19, 70-310 Szczecin, Poland.

出版信息

Materials (Basel). 2021 Dec 24;15(1):118. doi: 10.3390/ma15010118.

Abstract

This paper presents a new approach to the extraction and analysis of information contained in magnetic Barkhausen noise (MBN) for evaluation of grain oriented (GO) electrical steels. The proposed methodology for MBN analysis is based on the combination of the Short-Time Fourier Transform for the observation of the instantaneous dynamics of the phenomenon and deep convolutional neural networks (DCNN) for the extraction of hidden information and building the knowledge. The use of DCNN makes it possible to find even complex and convoluted rules of the Barkhausen phenomenon course, difficult to determine based solely on the selected features of MBN signals. During the tests, several samples made of conventional and high permeability GO steels were tested at different angles between the rolling and transverse directions. The influences of the angular resolution and the proposed additional prediction update algorithm on the DCNN accuracy were investigated, obtaining the highest gain for the angle of 3.6°, for which the overall accuracy exceeded 80%. The obtained results indicate that the proposed new solution combining time-frequency analysis and DCNN for the quantification of information from MBN having stochastic nature may be a very effective tool in the characterization of the magnetic materials.

摘要

本文提出了一种新方法,用于提取和分析磁巴克豪森噪声(MBN)中包含的信息,以评估晶粒取向(GO)电工钢。所提出的MBN分析方法基于短时傅里叶变换与深度卷积神经网络(DCNN)的结合,前者用于观察该现象的瞬时动态,后者用于提取隐藏信息并构建知识。DCNN的使用使得能够找到巴克豪森现象过程中即使是复杂且难以捉摸的规则,这些规则仅基于MBN信号的选定特征很难确定。在测试过程中,对由常规和高磁导率GO钢制成的多个样品在轧制方向和横向之间的不同角度下进行了测试。研究了角度分辨率和所提出的附加预测更新算法对DCNN精度的影响,发现对于3.6°的角度获得了最高增益,此时总体精度超过80%。所得结果表明,所提出的将时频分析和DCNN相结合的新解决方案,用于对具有随机性质的MBN信息进行量化,可能是表征磁性材料的一种非常有效的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f095/8746057/c6faf0a94d1d/materials-15-00118-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验