Suppr超能文献

基于卷积神经网络自相似性的纳米纤维材料异常检测

Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity.

作者信息

Napoletano Paolo, Piccoli Flavio, Schettini Raimondo

机构信息

Department of Computer Science, Systems and Communications, University of Milano-Bicocca, Milan 20126, Italy.

出版信息

Sensors (Basel). 2018 Jan 12;18(1):209. doi: 10.3390/s18010209.

Abstract

Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

摘要

纳米纤维材料中异常的自动检测和定位有助于降低生产过程的成本以及生产后视觉检查过程的时间。在所有监测方法中,利用扫描电子显微镜(SEM)成像的方法最为有效。在本文中,我们提出了一种基于卷积神经网络(CNN)和自相似性的区域方法,用于检测和定位SEM图像中的异常。该方法通过计算与属于训练集的无异常子区域字典的基于CNN的视觉相似性,来评估所考虑图像的每个子区域的异常程度。所提出的方法优于现有技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aeb/5795842/1b39c8c56589/sensors-18-00209-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验