Napoletano Paolo, Piccoli Flavio, Schettini Raimondo
Department of Computer Science, Systems and Communications, University of Milano-Bicocca, Milan 20126, Italy.
Sensors (Basel). 2018 Jan 12;18(1):209. doi: 10.3390/s18010209.
Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.
纳米纤维材料中异常的自动检测和定位有助于降低生产过程的成本以及生产后视觉检查过程的时间。在所有监测方法中,利用扫描电子显微镜(SEM)成像的方法最为有效。在本文中,我们提出了一种基于卷积神经网络(CNN)和自相似性的区域方法,用于检测和定位SEM图像中的异常。该方法通过计算与属于训练集的无异常子区域字典的基于CNN的视觉相似性,来评估所考虑图像的每个子区域的异常程度。所提出的方法优于现有技术。