Suppr超能文献

非驾驶活动的识别及其对接管过程的影响。

The Identification of Non-Driving Activities with Associated Implication on the Take-Over Process.

机构信息

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK.

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

Sensors (Basel). 2021 Dec 22;22(1):42. doi: 10.3390/s22010042.

Abstract

In conditionally automated driving, the engagement of non-driving activities (NDAs) can be regarded as the main factor that affects the driver's take-over performance, the investigation of which is of great importance to the design of an intelligent human-machine interface for a safe and smooth control transition. This paper introduces a 3D convolutional neural network-based system to recognize six types of driver behaviour (four types of NDAs and two types of driving activities) through two video feeds based on head and hand movement. Based on the interaction of driver and object, the selected NDAs are divided into active mode and passive mode. The proposed recognition system achieves 85.87% accuracy for the classification of six activities. The impact of NDAs on the perspective of the driver's situation awareness and take-over quality in terms of both activity type and interaction mode is further investigated. The results show that at a similar level of achieved maximum lateral error, the engagement of NDAs demands more time for drivers to accomplish the control transition, especially for the active mode NDAs engagement, which is more mentally demanding and reduces drivers' sensitiveness to the driving situation change. Moreover, the haptic feedback torque from the steering wheel could help to reduce the time of the transition process, which can be regarded as a productive assistance system for the take-over process.

摘要

在有条件的自动驾驶中,非驾驶活动(NDA)的参与可以被视为影响驾驶员接管性能的主要因素,对其进行研究对于设计智能人机界面以实现安全平稳的控制转换非常重要。本文介绍了一种基于 3D 卷积神经网络的系统,该系统通过基于头部和手部运动的两个视频流来识别六种驾驶员行为类型(四种 NDA 和两种驾驶活动)。基于驾驶员和物体的交互,选择的 NDA 分为主动模式和被动模式。所提出的识别系统对六种活动的分类达到了 85.87%的准确率。进一步研究了 NDA 对驾驶员态势感知和接管质量的影响,包括活动类型和交互模式。结果表明,在达到最大横向误差相似水平的情况下,驾驶员完成控制转换需要更多的时间,特别是对于主动模式的 NDA 参与,这需要更多的精神投入,并降低了驾驶员对驾驶情况变化的敏感性。此外,来自方向盘的触觉反馈扭矩有助于减少过渡过程的时间,这可以被视为接管过程中的一种生产性辅助系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0987/8747182/11c70cf12110/sensors-22-00042-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验