Suppr超能文献

基于卷积神经网络-门控循环单元网络的智能车辆人机共享系统驾驶员转向意图预测

Driver Steering Intention Prediction for Human-Machine Shared Systems of Intelligent Vehicles Based on CNN-GRU Network.

作者信息

Zhou Chen, Zhang Fan, Nacpil Edric John Cruz, Wang Zheng, Xu Fei-Xiang

机构信息

Information and Control Engineering, China University of Mining and Technology, Xuzhou 221000, China.

Fujian Key Laboratory of Green Intelligent Drive and Transmission for Mobile Machinery, Huaqiao University, Xiamen 361021, China.

出版信息

Sensors (Basel). 2025 May 20;25(10):3224. doi: 10.3390/s25103224.

Abstract

In order to mitigate human-machine conflicts and optimize shared control strategy in advance, it is essential for the shared control system to understand and predict driver behavior. This paper proposes a method for predicting driver steering intention with a CNN-GRU hybrid machine learning model. The convolutional neural network (CNN) layer extracts features from the stochastic driver behavior, which is input to the gated-recurrent-unit (GRU) layer. And the driver's steering intention is forecasted based on the GRU model. Our study was conducted using a driving simulator to observe the lateral control behaviors of 18 participants in four different driving circumstances. Finally, the efficiency of the suggested prediction approach was evaluated employing long-short-term-memory, GRU, CNN, Transformer, and back propagation networks. Experimental results demonstrated that the proposed CNN-GRU model performs significantly better than baseline models. Compared with the GRU network, the CNN-GRU network reduced the RMSE, MAE, and MAPE of the driver's input torque by 33.22%, 32.33%, and 35.86%, respectively. The proposed prediction method also possesses adaptability to different driver behaviors.

摘要

为了提前缓解人机冲突并优化共享控制策略,共享控制系统理解和预测驾驶员行为至关重要。本文提出了一种使用CNN-GRU混合机器学习模型预测驾驶员转向意图的方法。卷积神经网络(CNN)层从随机的驾驶员行为中提取特征,该行为被输入到门控循环单元(GRU)层。然后基于GRU模型预测驾驶员的转向意图。我们的研究使用驾驶模拟器进行,以观察18名参与者在四种不同驾驶环境下的横向控制行为。最后,采用长短期记忆网络、GRU、CNN、Transformer和反向传播网络评估了所提出的预测方法的效率。实验结果表明,所提出的CNN-GRU模型的性能明显优于基线模型。与GRU网络相比,CNN-GRU网络分别将驾驶员输入扭矩的均方根误差、平均绝对误差和平均绝对百分比误差降低了33.22%、32.33%和35.86%。所提出的预测方法也具有对不同驾驶员行为的适应性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验