Zhou Chen, Zhang Fan, Nacpil Edric John Cruz, Wang Zheng, Xu Fei-Xiang
Information and Control Engineering, China University of Mining and Technology, Xuzhou 221000, China.
Fujian Key Laboratory of Green Intelligent Drive and Transmission for Mobile Machinery, Huaqiao University, Xiamen 361021, China.
Sensors (Basel). 2025 May 20;25(10):3224. doi: 10.3390/s25103224.
In order to mitigate human-machine conflicts and optimize shared control strategy in advance, it is essential for the shared control system to understand and predict driver behavior. This paper proposes a method for predicting driver steering intention with a CNN-GRU hybrid machine learning model. The convolutional neural network (CNN) layer extracts features from the stochastic driver behavior, which is input to the gated-recurrent-unit (GRU) layer. And the driver's steering intention is forecasted based on the GRU model. Our study was conducted using a driving simulator to observe the lateral control behaviors of 18 participants in four different driving circumstances. Finally, the efficiency of the suggested prediction approach was evaluated employing long-short-term-memory, GRU, CNN, Transformer, and back propagation networks. Experimental results demonstrated that the proposed CNN-GRU model performs significantly better than baseline models. Compared with the GRU network, the CNN-GRU network reduced the RMSE, MAE, and MAPE of the driver's input torque by 33.22%, 32.33%, and 35.86%, respectively. The proposed prediction method also possesses adaptability to different driver behaviors.
为了提前缓解人机冲突并优化共享控制策略,共享控制系统理解和预测驾驶员行为至关重要。本文提出了一种使用CNN-GRU混合机器学习模型预测驾驶员转向意图的方法。卷积神经网络(CNN)层从随机的驾驶员行为中提取特征,该行为被输入到门控循环单元(GRU)层。然后基于GRU模型预测驾驶员的转向意图。我们的研究使用驾驶模拟器进行,以观察18名参与者在四种不同驾驶环境下的横向控制行为。最后,采用长短期记忆网络、GRU、CNN、Transformer和反向传播网络评估了所提出的预测方法的效率。实验结果表明,所提出的CNN-GRU模型的性能明显优于基线模型。与GRU网络相比,CNN-GRU网络分别将驾驶员输入扭矩的均方根误差、平均绝对误差和平均绝对百分比误差降低了33.22%、32.33%和35.86%。所提出的预测方法也具有对不同驾驶员行为的适应性。