Suppr超能文献

基于信号互相关的改进群智能盲源分离

Improved Swarm Intelligent Blind Source Separation Based on Signal Cross-Correlation.

作者信息

Zi Jiali, Lv Danju, Liu Jiang, Huang Xin, Yao Wang, Gao Mingyuan, Xi Rui, Zhang Yan

机构信息

College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China.

School of Mathematics and Physics, Southwest Forestry University, Kunming 650224, China.

出版信息

Sensors (Basel). 2021 Dec 24;22(1):118. doi: 10.3390/s22010118.

Abstract

In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average.

摘要

近年来,从混合信号中分离出有效目标信号已成为信号研究领域一个热门且具有挑战性的课题。基于群体智能(SI)算法的盲源分离(BSS)(SI-BSS)已成为线性混合BSS的一种有效方法。然而,SI-BSS存在分离不完全的问题,因为并非所有信号源都能被分离。本文提出了一种基于信号互相关的改进群体智能盲源分离算法(SI-XBSS)。我们的方法创建了一个候选分离池,该池包含比传统SI-BSS更多的分离信号;通过池中最小互相关值来确定最终的分离信号。与传统SI-BSS相比,SI-XBSS应用于六种群体智能算法(粒子群优化算法(PSO)、遗传算法(GA)、差分进化算法(DE)、正弦余弦算法(SCA)、蝴蝶优化算法(BOA)和乌鸦搜索算法(CSA))。结果表明,SI-XBSS能够有效地实现更高的分离成功率,平均比传统SI-BSS高出35%以上。此外,SI-SDR平均提高了14.72。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e88f/8747210/ccec4e886437/sensors-22-00118-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验