Suppr超能文献

蝶群算法在全局优化和特征选择性能改进方面的研究。

On the performance improvement of Butterfly Optimization approaches for global optimization and Feature Selection.

机构信息

Department of Management Information Systems, College of Business, King Khalid University, Abha, Saudi Arabia.

出版信息

PLoS One. 2021 Jan 8;16(1):e0242612. doi: 10.1371/journal.pone.0242612. eCollection 2021.

Abstract

Butterfly Optimization Algorithm (BOA) is a recent metaheuristics algorithm that mimics the behavior of butterflies in mating and foraging. In this paper, three improved versions of BOA have been developed to prevent the original algorithm from getting trapped in local optima and have a good balance between exploration and exploitation abilities. In the first version, Opposition-Based Strategy has been embedded in BOA while in the second Chaotic Local Search has been embedded. Both strategies: Opposition-based & Chaotic Local Search have been integrated to get the most optimal/near-optimal results. The proposed versions are compared against original Butterfly Optimization Algorithm (BOA), Grey Wolf Optimizer (GWO), Moth-flame Optimization (MFO), Particle warm Optimization (PSO), Sine Cosine Algorithm (SCA), and Whale Optimization Algorithm (WOA) using CEC 2014 benchmark functions and 4 different real-world engineering problems namely: welded beam engineering design, tension/compression spring, pressure vessel design, and Speed reducer design problem. Furthermore, the proposed approches have been applied to feature selection problem using 5 UCI datasets. The results show the superiority of the third version (CLSOBBOA) in achieving the best results in terms of speed and accuracy.

摘要

蝴蝶优化算法(BOA)是一种最近的元启发式算法,它模拟了蝴蝶在交配和觅食中的行为。在本文中,我们开发了三种改进的 BOA 版本,以防止原始算法陷入局部最优,并在探索和开发能力之间取得良好的平衡。在第一个版本中,我们将基于对立的策略嵌入到 BOA 中,而在第二个版本中,我们将混沌局部搜索嵌入到 BOA 中。这两种策略:基于对立的策略和混沌局部搜索,都被集成在一起,以获得最佳/接近最佳的结果。我们将提出的版本与原始蝴蝶优化算法(BOA)、灰狼优化算法(GWO)、飞蛾火焰优化算法(MFO)、粒子群优化算法(PSO)、正弦余弦算法(SCA)和鲸鱼优化算法(WOA)进行了比较,使用 CEC 2014 基准函数和 4 个不同的实际工程问题,即:焊接梁工程设计、拉伸/压缩弹簧、压力容器设计和减速器设计问题。此外,我们还将这些方法应用于 5 个 UCI 数据集的特征选择问题。结果表明,第三个版本(CLSOBBOA)在速度和准确性方面具有优势,能够获得最佳结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9601/7793310/141f917082e0/pone.0242612.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验