Suppr超能文献

利用纹理特征对小麦黄锈病感染类型进行分类。

Wheat Yellow Rust Disease Infection Type Classification Using Texture Features.

机构信息

School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.

Department of Engineering and Technology, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.

出版信息

Sensors (Basel). 2021 Dec 27;22(1):146. doi: 10.3390/s22010146.

Abstract

Wheat is a staple crop of Pakistan that covers almost 40% of the cultivated land and contributes almost 3% in the overall Gross Domestic Product (GDP) of Pakistan. However, due to increasing seasonal variation, it was observed that wheat is majorly affected by rust disease, particularly in rain-fed areas. Rust is considered the most harmful fungal disease for wheat, which can cause reductions of 20-30% in wheat yield. Its capability to spread rapidly over time has made its management most challenging, becoming a major threat to food security. In order to counter this threat, precise detection of wheat rust and its infection types is important for minimizing yield losses. For this purpose, we have proposed a framework for classifying wheat yellow rust infection types using machine learning techniques. First, an image dataset of different yellow rust infections was collected using mobile cameras. Six Gray Level Co-occurrence Matrix (GLCM) texture features and four Local Binary Patterns (LBP) texture features were extracted from grayscale images of the collected dataset. In order to classify wheat yellow rust disease into its three classes (healthy, resistant, and susceptible), Decision Tree, Random Forest, Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), and CatBoost were used with (i) GLCM, (ii) LBP, and (iii) combined GLCM-LBP texture features. The results indicate that CatBoost outperformed on GLCM texture features with an accuracy of 92.30%. This accuracy can be further improved by scaling up the dataset and applying deep learning models. The development of the proposed study could be useful for the agricultural community for the early detection of wheat yellow rust infection and assist in taking remedial measures to contain crop yield.

摘要

小麦是巴基斯坦的主要农作物之一,几乎覆盖了 40%的耕地,对巴基斯坦的国内生产总值(GDP)贡献了近 3%。然而,由于季节性变化的增加,人们观察到小麦主要受到锈病的影响,特别是在雨养地区。锈病被认为是对小麦危害最大的真菌病害,可导致小麦减产 20-30%。随着时间的推移,它迅速传播的能力使其管理极具挑战性,成为粮食安全的主要威胁。为了应对这一威胁,精确检测小麦锈病及其感染类型对于最大限度地减少产量损失非常重要。为此,我们提出了一种使用机器学习技术对小麦黄斑锈病感染类型进行分类的框架。首先,使用移动相机采集了不同黄斑锈病感染的图像数据集。从采集的数据集的灰度图像中提取了六个灰度共生矩阵(GLCM)纹理特征和四个局部二值模式(LBP)纹理特征。为了将小麦黄斑锈病分为健康、抗性和敏感三个类别,使用决策树、随机森林、轻梯度提升机(LightGBM)、极端梯度提升机(XGBoost)和 CatBoost 算法,并结合(i)GLCM、(ii)LBP 和(iii)GLCM-LBP 纹理特征对其进行分类。结果表明,CatBoost 在 GLCM 纹理特征上的表现优于其他算法,准确率为 92.30%。通过扩大数据集和应用深度学习模型,可以进一步提高该准确率。该研究的发展对于农业社区早期检测小麦黄斑锈病感染并采取补救措施控制作物产量可能非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e62f/8747460/838e5aa9b455/sensors-22-00146-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验