Suppr超能文献

利用深度学习进行基于图像的植物病害检测。

Using Deep Learning for Image-Based Plant Disease Detection.

作者信息

Mohanty Sharada P, Hughes David P, Salathé Marcel

机构信息

Digital Epidemiology Lab, EPFLGeneva, Switzerland; School of Life Sciences, EPFLLausanne, Switzerland; School of Computer and Communication Sciences, EPFLLausanne, Switzerland.

Department of Entomology, College of Agricultural Sciences, Penn State UniversityState College, PA, USA; Department of Biology, Eberly College of Sciences, Penn State UniversityState College, PA, USA; Center for Infectious Disease Dynamics, Huck Institutes of Life Sciences, Penn State UniversityState College, PA, USA.

出版信息

Front Plant Sci. 2016 Sep 22;7:1419. doi: 10.3389/fpls.2016.01419. eCollection 2016.

Abstract

Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep learning has paved the way for smartphone-assisted disease diagnosis. Using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions, we train a deep convolutional neural network to identify 14 crop species and 26 diseases (or absence thereof). The trained model achieves an accuracy of 99.35% on a held-out test set, demonstrating the feasibility of this approach. Overall, the approach of training deep learning models on increasingly large and publicly available image datasets presents a clear path toward smartphone-assisted crop disease diagnosis on a massive global scale.

摘要

作物病害是粮食安全的重大威胁,但由于缺乏必要的基础设施,在世界许多地区,对其进行快速识别仍然困难重重。全球智能手机普及率不断提高,加上深度学习推动计算机视觉取得的最新进展,为智能手机辅助病害诊断铺平了道路。我们使用在受控条件下收集的包含54306张患病和健康植物叶片图像的公共数据集,训练了一个深度卷积神经网络,以识别14种作物品种和26种病害(或无病害情况)。训练后的模型在留出的测试集上达到了99.35%的准确率,证明了这种方法的可行性。总体而言,在越来越大的公开可用图像数据集上训练深度学习模型的方法,为在全球范围内大规模开展智能手机辅助作物病害诊断指明了一条清晰的道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7f/5032846/eb818011813d/fpls-07-01419-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验