Deng Yu, Li Chunjiang, Li Zhijun, Zhang Baosen
Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China.
Research Center on Levee Safety Disaster Prevention, MWR, Zhengzhou 450003, China.
Sensors (Basel). 2021 Dec 28;22(1):176. doi: 10.3390/s22010176.
Regarding the ice periods of the Yellow River, it is difficult to obtain ice data information. To effectively grasp the ice evolution process in the ice periods of the typical reach of the Yellow River, a fixed-point air-coupled radar remote monitoring device is proposed in this paper. The device is mainly composed of an air-coupled radar ice thickness measurement sensor, radar water level measurement sensor, temperature measurement sensor, high-definition infrared night vision instrument, remote switch control, telemetry communication machine, solar and wind power supply, lightning protection, and slewing arm steel tower. The integrated monitoring device can monitor ice thickness, water level, air temperature, ice surface temperature, and other related parameters in real time. At present, devices have obtained the ice change process of fixed points in ice periods from 2020 to 2021. Through a comparison with manual data, the mean error of the monitoring results of the water level and ice thickness was approximately 1 cm. The device realizes the real-time monitoring of ice thickness and water level change in the whole cycle at the fixed position. Through video monitoring, it can take pictures and videos regularly and realize the connection between the visual river and monitoring data. The research results provide a new model and new technology for hydrological monitoring in the ice periods of the Yellow River, which has broad application prospects.
关于黄河的结冰期,很难获取冰情数据信息。为有效掌握黄河典型河段结冰期的冰情演变过程,本文提出了一种定点空气耦合雷达远程监测装置。该装置主要由空气耦合雷达测冰厚传感器、雷达水位测量传感器、温度测量传感器、高清红外夜视仪、远程开关控制、遥测通信机、太阳能和风能供电、防雷以及悬臂钢塔组成。该综合监测装置能够实时监测冰厚、水位、气温、冰面温度等相关参数。目前,该装置已获取了2020年至2021年结冰期定点的冰情变化过程。通过与人工数据对比,水位和冰厚监测结果的平均误差约为1厘米。该装置实现了在固定位置对整个周期内冰厚和水位变化的实时监测。通过视频监测,可定期拍照和录像,实现可视化河道与监测数据的关联。研究成果为黄河结冰期水文监测提供了新的模式和新技术,具有广阔的应用前景。