Suppr超能文献

使用采用自适应模板匹配的简单超声传感器检测高散射材料中的缺陷。

Flaw Detection in Highly Scattering Materials Using a Simple Ultrasonic Sensor Employing Adaptive Template Matching.

作者信息

Wu Biao, Huang Yong

机构信息

College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China.

Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China.

出版信息

Sensors (Basel). 2021 Dec 30;22(1):268. doi: 10.3390/s22010268.

Abstract

Ultrasonic sensors have been extensively used in the nondestructive testing of materials for flaw detection. For polycrystalline materials, however, due to the scattering nature of the material, which results in strong grain noise and attenuation of the ultrasonic signal, accurate detection of flaws is particularly difficult. In this paper, a novel flaw-detection method using a simple ultrasonic sensor is proposed by exploiting time-frequency features of an ultrasonic signal. Since grain scattering mostly happens in the Rayleigh scattering region, it is possible to separate grain-scattered noise from flaw echoes in the frequency domain employing their spectral difference. We start with the spectral modeling of grain noise and flaw echo, and how the two spectra evolve with time is established. Then, a time-adaptive spectrum model for flaw echo is proposed, which serves as a template for the flaw-detection procedure. Next, a specially designed similarity measure is proposed, based on which the similarity between the template spectrum and the spectrum of the signal at each time point is evaluated sequentially, producing a series of matching coefficients termed moving window spectrum similarity (MWSS). The time-delay information of flaws is directly indicated by the peaks of MWSSs. Finally, the performance of the proposed method is validated by both simulated and experimental signals, showing satisfactory accuracy and efficiency.

摘要

超声波传感器已广泛应用于材料无损检测中的缺陷检测。然而,对于多晶材料,由于材料的散射特性,会导致强烈的晶粒噪声和超声信号衰减,因此准确检测缺陷尤为困难。本文提出了一种利用简单超声波传感器的新型缺陷检测方法,该方法通过利用超声信号的时频特征来实现。由于晶粒散射大多发生在瑞利散射区域,因此可以利用它们在频域中的频谱差异将晶粒散射噪声与缺陷回波分离。我们首先对晶粒噪声和缺陷回波进行频谱建模,并确定两者频谱随时间的演变情况。然后,提出了一种用于缺陷回波的时间自适应频谱模型,该模型作为缺陷检测过程的模板。接下来,提出了一种专门设计的相似性度量,基于该度量依次评估模板频谱与每个时间点信号频谱之间的相似性,产生一系列称为移动窗口频谱相似性(MWSS)的匹配系数。MWSS的峰值直接指示缺陷的时延信息。最后,通过模拟信号和实验信号验证了该方法的性能,显示出令人满意的准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff9f/8749885/019e2884cc34/sensors-22-00268-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验