Suppr超能文献

基于变分自编码器和解释的资产退化过程中的异常检测。

Anomaly Detection in Asset Degradation Process Using Variational Autoencoder and Explanations.

机构信息

Department of Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.

ArcelorMittal Poland, 31-752 Krakow, Poland.

出版信息

Sensors (Basel). 2021 Dec 31;22(1):291. doi: 10.3390/s22010291.

Abstract

Development of predictive maintenance (PdM) solutions is one of the key aspects of Industry 4.0. In recent years, more attention has been paid to data-driven techniques, which use machine learning to monitor the health of an industrial asset. The major issue in the implementation of PdM models is a lack of good quality labelled data. In the paper we present how unsupervised learning using a variational autoencoder may be used to monitor the wear of rolls in a hot strip mill, a part of a steel-making site. As an additional benchmark we use a simulated turbofan engine data set provided by NASA. We also use explainability methods in order to understand the model's predictions. The results show that the variational autoencoder slightly outperforms the base autoencoder architecture in anomaly detection tasks. However, its performance on the real use-case does not make it a production-ready solution for industry and should be a matter of further research. Furthermore, the information obtained from the explainability model can increase the reliability of the proposed artificial intelligence-based solution.

摘要

预测性维护(PdM)解决方案的开发是工业 4.0 的关键方面之一。近年来,人们越来越关注数据驱动技术,该技术使用机器学习来监测工业资产的健康状况。在实施 PdM 模型时的主要问题是缺乏高质量的标记数据。在本文中,我们介绍了如何使用变分自动编码器进行无监督学习来监测热轧带钢厂中轧辊的磨损情况,轧辊是钢铁厂的一部分。作为附加基准,我们使用了由 NASA 提供的模拟涡轮风扇发动机数据集。我们还使用了可解释性方法来了解模型的预测。结果表明,变分自动编码器在异常检测任务中略优于基本自动编码器架构。然而,它在实际用例中的性能还不能使其成为适用于工业的成品解决方案,而应该是进一步研究的问题。此外,从可解释性模型中获得的信息可以提高基于人工智能的解决方案的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bcc/8749861/a95c5a3e09e0/sensors-22-00291-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验