Suppr超能文献

基于自监督迁移学习的轮椅安全行驶用人行道状况分类。

Classification of the Sidewalk Condition Using Self-Supervised Transfer Learning for Wheelchair Safety Driving.

机构信息

Department of Data Science, Seoul National University of Science and Technology, Seoul 01811, Korea.

Research Center for Data Science, Seoul National University of Science and Technology, Seoul 01811, Korea.

出版信息

Sensors (Basel). 2022 Jan 5;22(1):380. doi: 10.3390/s22010380.

Abstract

The demand for wheelchairs has increased recently as the population of the elderly and patients with disorders increases. However, society still pays less attention to infrastructure that can threaten the wheelchair user, such as sidewalks with cracks/potholes. Although various studies have been proposed to recognize such challenges, they mainly depend on RGB images or IMU sensors, which are sensitive to outdoor conditions such as low illumination, bad weather, and unavoidable vibrations, resulting in unsatisfactory and unstable performance. In this paper, we introduce a novel system based on various convolutional neural networks (CNNs) to automatically classify the condition of sidewalks using images captured with depth and infrared modalities. Moreover, we compare the performance of training CNNs from scratch and the transfer learning approach, where the weights learned from the natural image domain (e.g., ImageNet) are fine-tuned to the depth and infrared image domain. In particular, we propose applying the ResNet-152 model pre-trained with self-supervised learning during transfer learning to leverage better image representations. Performance evaluation on the classification of the sidewalk condition was conducted with 100% and 10% of training data. The experimental results validate the effectiveness and feasibility of the proposed approach and bring future research directions.

摘要

由于老年人口和疾病患者的增加,最近对轮椅的需求有所增加。然而,社会仍然较少关注可能威胁轮椅使用者的基础设施,例如有裂缝/坑洼的人行道。尽管已经提出了各种研究来识别此类挑战,但它们主要依赖于 RGB 图像或 IMU 传感器,这些传感器对外界条件(如低光照、恶劣天气和不可避免的振动)很敏感,导致性能不理想且不稳定。在本文中,我们介绍了一个基于各种卷积神经网络(CNN)的新系统,该系统使用深度和红外模态拍摄的图像自动对人行道的状况进行分类。此外,我们比较了从零开始训练 CNN 和迁移学习方法的性能,其中从自然图像域(例如,ImageNet)学习到的权重经过微调以适应深度和红外图像域。特别是,我们提出在迁移学习中应用自监督学习预先训练的 ResNet-152 模型,以利用更好的图像表示。使用 100%和 10%的训练数据对人行道状况的分类进行了性能评估。实验结果验证了所提出方法的有效性和可行性,并提出了未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/145c/8749508/a1da6fdf9c6c/sensors-22-00380-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验