Suppr超能文献

探索迁移学习在小尺寸不平衡内镜图像上进行胃肠道出血检测的应用。

Exploring transfer learning for gastrointestinal bleeding detection on small-size imbalanced endoscopy images.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1994-1997. doi: 10.1109/EMBC.2017.8037242.

Abstract

The success of Convolutional Neural Network (CNN) is attributed to their ability to learn rich midlevel image representations as opposed to hand-crafted low-level features used in many natural image classification methods. Learning CNN, however, amounts to estimating millions of parameters and requires a very large number of annotated image samples. In this paper, we explored transfer learning for gastrointestinal bleeding detection on small-size imbalanced endoscopy images, and showed how image representations learned with CNN on large-scale annotated datasets can be efficiently transferred to other tasks with limited amount of training data. We first transferred pre-trained Inception V3 model trained on the ImageNet dataset to compute mid-level image representation, and then fine-tuned the trained model with labeled endoscopy images, and resumed training from already learned weights. Additionally, we introduce both data augmentation and image resampling to increase the size of the training database and the positive sample rate to perform the Transfer Learning. Our results showed that our transfer learning method produces the best performance on AUC (the area under the receiver operating curve), Precision, Recall and Accuracy as compared to both the hand-crafted feature based method and training CNN model from-scratch method.

摘要

卷积神经网络(CNN)的成功归因于其学习丰富的中级图像表示的能力,这与许多自然图像分类方法中使用的手工制作的低级特征形成对比。然而,学习CNN相当于估计数百万个参数,并且需要大量带注释的图像样本。在本文中,我们探索了针对小尺寸不平衡内窥镜图像进行胃肠道出血检测的迁移学习,并展示了如何将在大规模带注释数据集上用CNN学习到的图像表示有效地转移到训练数据量有限的其他任务中。我们首先转移在ImageNet数据集上训练的预训练Inception V3模型来计算中级图像表示,然后用带标签的内窥镜图像对训练好的模型进行微调,并从已学习的权重开始继续训练。此外,我们引入了数据增强和图像重采样来增加训练数据库的大小和正样本率,以执行迁移学习。我们的结果表明,与基于手工制作特征的方法和从头开始训练CNN模型的方法相比,我们的迁移学习方法在AUC(接收器操作曲线下的面积)、精确率、召回率和准确率方面产生了最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验