Suppr超能文献

基于惯性测量单元(IMU)和WiFi的室内走廊环境下无人机定位的约束扩展卡尔曼滤波算法

Constrained ESKF for UAV Positioning in Indoor Corridor Environment Based on IMU and WiFi.

作者信息

Li Zhonghan, Zhang Yongbo

机构信息

School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China.

Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University, Ningbo 315100, China.

出版信息

Sensors (Basel). 2022 Jan 5;22(1):391. doi: 10.3390/s22010391.

Abstract

The indoor autonomous navigation of unmanned aerial vehicles (UAVs) is the current research hotspot. Unlike the outdoor broad environment, the indoor environment is unknown and complicated. Global Navigation Satellite System (GNSS) signals are easily blocked and reflected because of complex indoor spatial features, which make it impossible to achieve positioning and navigation indoors relying on GNSS. This article proposes a set of indoor corridor environment positioning methods based on the integration of WiFi and IMU. The zone partition-based Weighted K Nearest Neighbors (WKNN) algorithm is used to achieve higher WiFi-based positioning accuracy. On the basis of the Error-State Kalman Filter (ESKF) algorithm, WiFi-based and IMU-based methods are fused together and realize higher positioning accuracy. The probability-based optimization method is used for further accuracy improvement. After data fusion, the positioning accuracy increased by 51.09% compared to the IMU-based algorithm and by 66.16% compared to the WiFi-based algorithm. After optimization, the positioning accuracy increased by 20.9% compared to the ESKF-based data fusion algorithm. All of the above results prove that methods based on WiFi and IMU (low-cost sensors) are very capable of obtaining high indoor positioning accuracy.

摘要

无人机的室内自主导航是当前的研究热点。与室外广阔环境不同,室内环境未知且复杂。由于复杂的室内空间特征,全球导航卫星系统(GNSS)信号容易被阻挡和反射,这使得依靠GNSS在室内实现定位和导航变得不可能。本文提出了一套基于WiFi和惯性测量单元(IMU)融合的室内走廊环境定位方法。基于区域划分的加权K近邻(WKNN)算法用于实现更高的基于WiFi的定位精度。在误差状态卡尔曼滤波器(ESKF)算法的基础上,将基于WiFi和基于IMU的方法融合在一起,实现了更高的定位精度。基于概率的优化方法用于进一步提高精度。数据融合后,定位精度相比基于IMU的算法提高了51.09%,相比基于WiFi的算法提高了66.16%。优化后,定位精度相比基于ESKF的数据融合算法提高了20.9%。上述所有结果证明,基于WiFi和IMU(低成本传感器)的方法非常有能力获得较高的室内定位精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57a5/8749682/968e1a1247f8/sensors-22-00391-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验