Asensio Gerardo, Benito-Garzón Lorena, Ramírez-Jiménez Rosa Ana, Guadilla Yasmina, Gonzalez-Rubio Julian, Abradelo Cristina, Parra Juan, Martín-López María Rocío, Aguilar María Rosa, Vázquez-Lasa Blanca, Rojo Luis
Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain.
Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain.
Polymers (Basel). 2021 Dec 21;14(1):12. doi: 10.3390/polym14010012.
Regenerative therapies based on tissue engineering are becoming the most promising alternative for the treatment of osteoarthritis and rheumatoid arthritis. However, regeneration of full-thickness articular osteochondral defects that reproduces the complexity of native cartilage and osteochondral interface still remains challenging. Hence, in this work, we present the fabrication, physic-chemical characterization, and in vitro and in vivo evaluation of biomimetic hierarchical scaffolds that mimic both the spatial organization and composition of cartilage and the osteochondral interface. The scaffold is composed of a composite porous support obtained by cryopolymerization of poly(ethylene glycol) dimethacrylate (PEGDMA) in the presence of biodegradable poly(D,L-lactide--glycolide) (PLGA), bioactive tricalcium phosphate β-TCP and the bone promoting strontium folate (SrFO), with a gradient biomimetic photo-polymerized methacrylated hyaluronic acid (HAMA) based hydrogel containing the bioactive zinc folic acid derivative (ZnFO). Microscopical analysis of hierarchical scaffolds showed an open interconnected porous open microstructure and the in vitro behaviour results indicated high swelling capacity with a sustained degradation rate. In vitro release studies during 3 weeks indicated the sustained leaching of bioactive compounds, i.e., Sr, Zn and folic acid, within a biologically active range without negative effects on human osteoblast cells (hOBs) and human articular cartilage cells (hACs) cultures. In vitro co-cultures of hOBs and hACs revealed guided cell colonization and proliferation according to the matrix microstructure and composition. In vivo rabbit-condyle experiments in a critical-sized defect model showed the ability of the biomimetic scaffold to promote the regeneration of cartilage-like tissue over the scaffold and neoformation of osteochondral tissue.
基于组织工程的再生疗法正成为治疗骨关节炎和类风湿性关节炎最有前景的替代方法。然而,要再生出能重现天然软骨和骨软骨界面复杂性的全层关节骨软骨缺损,仍然具有挑战性。因此,在本研究中,我们展示了仿生分级支架的制备、物理化学表征以及体外和体内评估,该支架模拟了软骨和骨软骨界面的空间组织与组成。该支架由一种复合多孔载体组成,该载体是在可生物降解的聚(D,L-丙交酯-乙交酯)(PLGA)、生物活性β-磷酸三钙(β-TCP)和促骨生成的叶酸锶(SrFO)存在下,通过聚乙二醇二甲基丙烯酸酯(PEGDMA)的低温聚合得到的,还有一种基于梯度仿生光聚合甲基丙烯酸化透明质酸(HAMA)的水凝胶,其中含有生物活性锌叶酸衍生物(ZnFO)。对分级支架的显微镜分析显示出开放的相互连通的多孔微观结构,体外行为结果表明其具有高膨胀能力和持续降解率。为期3周的体外释放研究表明,生物活性化合物(即Sr、Zn和叶酸)在生物活性范围内持续释放,且对人成骨细胞(hOBs)和人关节软骨细胞(hACs)培养物无负面影响。hOBs和hACs的体外共培养显示,细胞根据基质的微观结构和组成进行定向定植和增殖。在临界尺寸缺损模型中进行的体内兔髁实验表明,仿生支架能够促进支架上类似软骨组织的再生以及骨软骨组织的新形成。