Meramo Samir, González-Delgado Ángel Darío, Sukumara Sumesh, Fajardo William Stive, León-Pulido Jeffrey
Sustainable Innovation Office, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Lyngby-Taarbæk, Denmark.
Nanomaterials and Computer-Aided Process Engineering, Chemical Engineering Program, Universidad de Cartagena, Piedra de Bolívar, Street 30 #48-152, Cartagena 130000, Colombia.
Polymers (Basel). 2021 Dec 22;14(1):25. doi: 10.3390/polym14010025.
Enhancing the biochemical supply chain towards sustainable development requires more efforts to boost technology innovation at early design phases and avoid delays in industrial biotechnology growth. Such a transformation requires a comprehensive step-wise procedure to guide bioprocess development from laboratory protocols to commercialization. This study introduces a process design framework to guide research and development (R&D) through this journey, bearing in mind the particular challenges of bioprocess modeling. The method combines sustainability assessment and process optimization based on process efficiency indicators, technical indicators, Life Cycle Assessment (LCA), and process optimization via Water Regeneration Networks (WRN). Since many bioprocesses remain at low Technology Readiness Levels (TRLs), the process simulation module was examined in detail to account for uncertainties, providing strategies for successful guidance. The sustainability assessment was performed using the geometric mean-based sustainability footprint metric. A case study based on Chitosan production from shrimp exoskeletons was evaluated to demonstrate the method's applicability and its advantages in product optimization. An optimized scenario was generated through a WRN to improve water management, then compared with the case study. The results confirm the existence of a possible configuration with better sustainability performance for the optimized case with a sustainability footprint of 0.33, compared with the performance of the base case (1.00).
加强生物化学供应链以实现可持续发展需要在早期设计阶段付出更多努力来推动技术创新,并避免工业生物技术发展的延迟。这种转变需要一个全面的逐步程序来指导生物过程从实验室方案到商业化的发展。本研究引入了一个过程设计框架,以指导研发(R&D)走过这段历程,同时牢记生物过程建模的特殊挑战。该方法基于过程效率指标、技术指标、生命周期评估(LCA)以及通过水再生网络(WRN)进行过程优化,将可持续性评估与过程优化相结合。由于许多生物过程仍处于较低的技术就绪水平(TRL),因此对过程模拟模块进行了详细研究,以考虑不确定性,提供成功指导的策略。使用基于几何均值的可持续性足迹指标进行可持续性评估。对一个基于虾壳生产壳聚糖的案例研究进行了评估,以证明该方法的适用性及其在产品优化方面的优势。通过水再生网络生成了一个优化方案以改善水资源管理,然后与案例研究进行比较。结果证实,与基础案例(1.00)的性能相比,优化案例存在一种可持续性性能更好的可能配置,其可持续性足迹为0.33。