Suppr超能文献

衰老相关分泌表型的染色质基础。

Chromatin basis of the senescence-associated secretory phenotype.

机构信息

Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.

Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.

出版信息

Trends Cell Biol. 2022 Jun;32(6):513-526. doi: 10.1016/j.tcb.2021.12.003. Epub 2022 Jan 7.

Abstract

Cellular senescence is a stable cell growth arrest. Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed senescence-associated secretory phenotype (SASP). The SASP exerts a range of functions in both normal health and pathology, which is possibly best characterized in cancers and physical aging. Recent studies demonstrated that chromatin is instrumental in regulating the SASP both through nuclear transcription and via the innate immune cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in the cytoplasm. Here, we will review these regulatory mechanisms, with an emphasis on most recent developments in the field. We will highlight the challenges and opportunities in developing intervention approaches, such as targeting chromatin regulatory mechanisms, to alter the SASP as an emerging approach to combat cancers and achieve healthy aging.

摘要

细胞衰老(Cellular senescence)是一种稳定的细胞生长停滞。衰老细胞具有代谢活性,其表现为炎症细胞因子、趋化因子和生长因子的分泌,这被称为衰老相关分泌表型(Senescence-Associated Secretory Phenotype,SASP)。SASP 在正常健康和病理学中发挥了一系列功能,这在癌症和身体衰老中表现得最为明显。最近的研究表明,染色质通过核转录和细胞质中环鸟苷酸-腺苷酸合酶(cyclic GMP-AMP synthase,cGAS)-干扰素基因刺激物(stimulator of interferon genes,STING)途径在调节 SASP 方面发挥了重要作用。在这里,我们将回顾这些调节机制,并特别强调该领域的最新进展。我们将强调开发干预方法(如靶向染色质调节机制)的挑战和机遇,以改变 SASP,作为一种新兴的抗癌和实现健康衰老的方法。

相似文献

1
Chromatin basis of the senescence-associated secretory phenotype.
Trends Cell Biol. 2022 Jun;32(6):513-526. doi: 10.1016/j.tcb.2021.12.003. Epub 2022 Jan 7.
2
Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer.
Cancer Sci. 2020 Feb;111(2):304-311. doi: 10.1111/cas.14266. Epub 2019 Dec 27.
3
Potential Regulators of the Senescence-Associated Secretory Phenotype During Senescence and Aging.
J Gerontol A Biol Sci Med Sci. 2022 Nov 21;77(11):2207-2218. doi: 10.1093/gerona/glac097.
5
Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence.
Nat Cell Biol. 2017 Sep;19(9):1061-1070. doi: 10.1038/ncb3586. Epub 2017 Jul 31.
6
Cytoplasmic chromatin triggers inflammation in senescence and cancer.
Nature. 2017 Oct 19;550(7676):402-406. doi: 10.1038/nature24050. Epub 2017 Oct 4.
7
TXNRD1 drives the innate immune response in senescent cells with implications for age-associated inflammation.
Nat Aging. 2024 Feb;4(2):185-197. doi: 10.1038/s43587-023-00564-1. Epub 2024 Jan 24.
8
Cytoplasmic chromatin fragments-from mechanisms to therapeutic potential.
Elife. 2021 Jan 29;10:e63728. doi: 10.7554/eLife.63728.
10
Autolysosomal degradation of cytosolic chromatin fragments antagonizes oxidative stress-induced senescence.
J Biol Chem. 2020 Apr 3;295(14):4451-4463. doi: 10.1074/jbc.RA119.010734. Epub 2020 Feb 11.

引用本文的文献

1
Interrogating the regulatory epigenome of cellular senescence.
Cell Mol Life Sci. 2025 Aug 31;82(1):328. doi: 10.1007/s00018-025-05848-w.
2
Influence of a Zombie-like State of the Liver on Drugs and Its Medico-Legal Implications: A Scoping Review.
Pharmaceuticals (Basel). 2025 May 24;18(6):787. doi: 10.3390/ph18060787.
3
Breaking Cancer's Momentum: CDK4/6 Inhibitors and the Promise of Combination Therapy.
Cancers (Basel). 2025 Jun 11;17(12):1941. doi: 10.3390/cancers17121941.
4
Unraveling immunosenescence in sepsis: from cellular mechanisms to therapeutics.
Cell Death Dis. 2025 May 16;16(1):393. doi: 10.1038/s41419-025-07714-w.
6
Glibenclamide targets MDH2 to relieve aging phenotypes through metabolism-regulated epigenetic modification.
Signal Transduct Target Ther. 2025 Feb 17;10(1):67. doi: 10.1038/s41392-025-02157-3.
8
10
The role of high mobility group proteins in cellular senescence mechanisms.
Front Aging. 2024 Oct 23;5:1486281. doi: 10.3389/fragi.2024.1486281. eCollection 2024.

本文引用的文献

1
Cytoplasmic DNA: sources, sensing, and role in aging and disease.
Cell. 2021 Oct 28;184(22):5506-5526. doi: 10.1016/j.cell.2021.09.034.
2
p21 produces a bioactive secretome that places stressed cells under immunosurveillance.
Science. 2021 Oct 29;374(6567):eabb3420. doi: 10.1126/science.abb3420.
3
KDM4 Orchestrates Epigenomic Remodeling of Senescent Cells and Potentiates the Senescence-Associated Secretory Phenotype.
Nat Aging. 2021 May;1(5):454-472. doi: 10.1038/s43587-021-00063-1. Epub 2021 May 13.
4
HMGB1 coordinates SASP-related chromatin folding and RNA homeostasis on the path to senescence.
Mol Syst Biol. 2021 Jun;17(6):e9760. doi: 10.15252/msb.20209760.
5
STING Agonists as Cancer Therapeutics.
Cancers (Basel). 2021 May 30;13(11):2695. doi: 10.3390/cancers13112695.
6
DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A.
J Cell Biol. 2021 Aug 2;220(8). doi: 10.1083/jcb.202008101. Epub 2021 May 26.
7
mA-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype.
Nat Cell Biol. 2021 Apr;23(4):355-365. doi: 10.1038/s41556-021-00656-3. Epub 2021 Apr 1.
8
Sensitization of ovarian tumor to immune checkpoint blockade by boosting senescence-associated secretory phenotype.
iScience. 2020 Dec 30;24(1):102016. doi: 10.1016/j.isci.2020.102016. eCollection 2021 Jan 22.
9
Transcription-dependent cohesin repositioning rewires chromatin loops in cellular senescence.
Nat Commun. 2020 Nov 27;11(1):6049. doi: 10.1038/s41467-020-19878-4.
10
Heterochromatin: an epigenetic point of view in aging.
Exp Mol Med. 2020 Sep;52(9):1466-1474. doi: 10.1038/s12276-020-00497-4. Epub 2020 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验