Suppr超能文献

通过在均匀纳米多孔隔膜中进行锂去溶剂化来抑制电解质与锂金属的反应活性。

Suppressing electrolyte-lithium metal reactivity via Li-desolvation in uniform nano-porous separator.

作者信息

Sheng Li, Wang Qianqian, Liu Xiang, Cui Hao, Wang Xiaolin, Xu Yulong, Li Zonglong, Wang Li, Chen Zonghai, Xu Gui-Liang, Wang Jianlong, Tang Yaping, Amine Khalil, Xu Hong, He Xiangming

机构信息

Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, P. R. China.

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.

出版信息

Nat Commun. 2022 Jan 10;13(1):172. doi: 10.1038/s41467-021-27841-0.

Abstract

Lithium reactivity with electrolytes leads to their continuous consumption and dendrite growth, which constitute major obstacles to harnessing the tremendous energy of lithium-metal anode in a reversible manner. Considerable attention has been focused on inhibiting dendrite via interface and electrolyte engineering, while admitting electrolyte-lithium metal reactivity as a thermodynamic inevitability. Here, we report the effective suppression of such reactivity through a nano-porous separator. Calculation assisted by diversified characterizations reveals that the separator partially desolvates Li in confinement created by its uniform nanopores, and deactivates solvents for electrochemical reduction before Li-deposition occurs. The consequence of such deactivation is realizing dendrite-free lithium-metal electrode, which even retaining its metallic lustre after long-term cycling in both Li-symmetric cell and high-voltage Li-metal battery with LiNiMnCoO as cathode. The discovery that a nano-structured separator alters both bulk and interfacial behaviors of electrolytes points us toward a new direction to harness lithium-metal as the most promising anode.

摘要

锂与电解质的反应性导致它们持续消耗并产生枝晶生长,这是可逆利用锂金属阳极巨大能量的主要障碍。相当多的注意力集中在通过界面和电解质工程来抑制枝晶,同时承认电解质与锂金属的反应性是一种热力学必然性。在此,我们报告了通过纳米多孔隔膜有效抑制这种反应性。多种表征辅助的计算表明,隔膜在其均匀纳米孔产生的受限环境中使锂部分去溶剂化,并在锂沉积发生之前使用于电化学还原的溶剂失活。这种失活的结果是实现了无枝晶锂金属电极,该电极在以LiNiMnCoO为阴极的锂对称电池和高压锂金属电池中经过长期循环后甚至仍保持其金属光泽。纳米结构隔膜改变电解质的本体和界面行为这一发现为我们利用锂金属作为最有前景的阳极指明了一个新方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8a8/8748786/e414ac3eb35c/41467_2021_27841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验