Suppr超能文献

完善硬碳阳极中的离子去溶剂化以实现可逆钠存储。

Consummating ion desolvation in hard carbon anodes for reversible sodium storage.

作者信息

Lu Ziyang, Yang Huijun, Guo Yong, Lin Hongxin, Shan Peizhao, Wu Shichao, He Ping, Yang Yong, Yang Quan-Hong, Zhou Haoshen

机构信息

Graduate School of System and Information Engineering, University of Tsukuba, Tsukuba, Japan.

Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, P. R. China.

出版信息

Nat Commun. 2024 Apr 25;15(1):3497. doi: 10.1038/s41467-024-47522-y.

Abstract

Hard carbons are emerging as the most viable anodes to support the commercialization of sodium-ion (Na-ion) batteries due to their competitive performance. However, the hard carbon anode suffers from low initial Coulombic efficiency (ICE), and the ambiguous Na-ion (Na) storage mechanism and interfacial chemistry fail to give a reasonable interpretation. Here, we have identified the time-dependent ion pre-desolvation on the nanopore of hard carbons, which significantly affects the Na storage efficiency by altering the solvation structure of electrolytes. Consummating the pre-desolvation by extending the aging time, generates a highly aggregated electrolyte configuration inside the nanopore, resulting in negligible reductive decomposition of electrolytes. When applying the above insights, the hard carbon anodes achieve a high average ICE of 98.21% in the absence of any Na supplementation techniques. Therefore, the negative-to-positive capacity ratio can be reduced to 1.02 for full cells, which enables an improved energy density. The insight into hard carbons and related interphases may be extended to other battery systems and support the continued development of battery technology.

摘要

硬碳由于其具有竞争力的性能,正成为支持钠离子电池商业化的最可行负极材料。然而,硬碳负极存在初始库仑效率低的问题,并且钠离子存储机制和界面化学尚不明确,无法给出合理的解释。在此,我们确定了硬碳纳米孔上随时间变化的离子预去溶剂化现象,这通过改变电解质的溶剂化结构显著影响了钠存储效率。通过延长老化时间来完善预去溶剂化过程,会在纳米孔内产生高度聚集的电解质构型,从而使电解质的还原分解可忽略不计。当应用上述见解时,硬碳负极在没有任何钠补充技术的情况下实现了98.21%的高平均初始库仑效率。因此,全电池的负正容量比可降至1.02,从而提高了能量密度。对硬碳及相关界面的深入了解可能会扩展到其他电池系统,并支持电池技术的持续发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2459/11045730/b53de5f8068a/41467_2024_47522_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验