Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, USA.
Brain Pathol. 2022 Sep;32(5):e13050. doi: 10.1111/bpa.13050. Epub 2022 Jan 10.
Resource-strained healthcare ecosystems often struggle with the adoption of the World Health Organization (WHO) recommendations for the classification of central nervous system (CNS) tumors. The generation of robust clinical diagnostic aids and the advancement of simple solutions to inform investment strategies in surgical neuropathology would improve patient care in these settings.
We used simple information theory calculations on a brain cancer simulation model and real-world data sets to compare contributions of clinical, histologic, immunohistochemical, and molecular information. An image noise assay was generated to compare the efficiencies of different image segmentation methods in H&E and Olig2 stained images obtained from digital slides. An auto-adjustable image analysis workflow was generated and compared with neuropathologists for p53 positivity quantification. Finally, the density of extracted features of the nuclei, p53 positivity quantification, and combined ATRX/age feature was used to generate a predictive model for 1p/19q codeletion in IDH-mutant tumors.
Information theory calculations can be performed on open access platforms and provide significant insight into linear and nonlinear associations between diagnostic biomarkers. Age, p53, and ATRX status have significant information for the diagnosis of IDH-mutant tumors. The predictive models may facilitate the reduction of false-positive 1p/19q codeletion by fluorescence in situ hybridization (FISH) testing.
We posit that this approach provides an improvement on the cIMPACT-NOW workflow recommendations for IDH-mutant tumors and a framework for future resource and testing allocation.
资源有限的医疗保健生态系统在采用世界卫生组织(WHO)对中枢神经系统(CNS)肿瘤分类的建议方面常常面临困难。生成强大的临床诊断辅助工具并提出简单的解决方案来为神经外科病理学的投资策略提供信息,将改善这些环境中的患者护理。
我们使用简单的信息理论计算对脑癌模拟模型和真实数据集进行了比较,以比较临床、组织学、免疫组织化学和分子信息的贡献。生成了一种图像噪声测定法,以比较不同的图像分割方法在从数字幻灯片获得的 H&E 和 Olig2 染色图像中的效率。生成了自动可调的图像分析工作流程,并与神经病理学家进行了 p53 阳性定量比较。最后,使用核密度、p53 阳性定量和 ATRX/年龄特征的提取特征来生成 IDH 突变肿瘤 1p/19q 缺失的预测模型。
信息理论计算可以在开放获取的平台上进行,并为诊断生物标志物之间的线性和非线性关系提供重要的见解。年龄、p53 和 ATRX 状态对 IDH 突变肿瘤的诊断具有重要意义。预测模型可能有助于减少荧光原位杂交(FISH)检测的 1p/19q 缺失的假阳性。
我们认为,这种方法改进了 IDH 突变肿瘤 cIMPACT-NOW 工作流程的建议,并为未来的资源和测试分配提供了框架。