Suppr超能文献

使用基于影像组学的机器学习比较MRI序列以预测ATRX状态

Comparison of MRI Sequences to Predict ATRX Status Using Radiomics-Based Machine Learning.

作者信息

Nacul Mora Nabila Gala, Akkurt Burak Han, Kasap Dilek, Blömer David, Heindel Walter, Mannil Manoj, Musigmann Manfred

机构信息

Clinic for Radiology, University of Münster and University Hospital Münster Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.

出版信息

Diagnostics (Basel). 2023 Jun 29;13(13):2216. doi: 10.3390/diagnostics13132216.

Abstract

ATRX is an important molecular marker according to the 2021 WHO classification of adult-type diffuse glioma. We aim to predict the ATRX mutation status non-invasively using radiomics-based machine learning models on MRI and to determine which MRI sequence is best suited for this purpose. In this retrospective study, we used MRI images of patients with histologically confirmed glioma, including the sequences T1w without and with the administration of contrast agent, T2w, and the FLAIR. Radiomics features were extracted from the corresponding MRI images by hand-delineated regions of interest. Data partitioning into training data and independent test data was repeated 100 times to avoid random effects. Feature preselection and subsequent model development were performed using Lasso regression. The T2w sequence was found to be the most suitable and the FLAIR sequence the least suitable for predicting ATRX mutations using radiomics-based machine learning models. For the T2w sequence, our seven-feature model developed with Lasso regression achieved a mean AUC of 0.831, a mean accuracy of 0.746, a mean sensitivity of 0.772, and a mean specificity of 0.697. In conclusion, for the prediction of ATRX mutation using radiomics-based machine learning models, the T2w sequence is the most suitable among the commonly used MRI sequences.

摘要

根据2021年世界卫生组织(WHO)成人型弥漫性胶质瘤分类,ATRX是一种重要的分子标志物。我们旨在使用基于放射组学的机器学习模型在MRI上无创预测ATRX突变状态,并确定哪种MRI序列最适合此目的。在这项回顾性研究中,我们使用了组织学确诊的胶质瘤患者的MRI图像,包括未注射和注射造影剂的T1w序列、T2w序列和FLAIR序列。通过手工勾勒感兴趣区域从相应的MRI图像中提取放射组学特征。将数据划分为训练数据和独立测试数据重复进行100次以避免随机效应。使用套索回归进行特征预选和后续模型开发。结果发现,使用基于放射组学的机器学习模型预测ATRX突变时,T2w序列最适合,FLAIR序列最不适合。对于T2w序列,我们用套索回归开发的七特征模型的平均AUC为0.831,平均准确率为0.746,平均灵敏度为0.772,平均特异性为0.697。总之,对于使用基于放射组学的机器学习模型预测ATRX突变,T2w序列在常用的MRI序列中最适合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a22/10341337/8af337cfa101/diagnostics-13-02216-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验