Department of General Dental Sciences, Marquette University School of Dentistry, Milwaukee 53233, Wisconsin, United States.
Department of Physics, School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, Brazil.
ACS Appl Bio Mater. 2021 Mar 15;4(3):2514-2522. doi: 10.1021/acsabm.0c01507. Epub 2021 Feb 5.
The use of polymer additives that stabilize fluidic amorphous calcium phosphate is key to obtaining intrafibrillar mineralization of collagen in vitro. On the other hand, this biomimetic approach inhibits the nucleation of mineral crystals in unconfined extrafibrillar spaces, that is, extrafibrillar mineralization. The extrafibrillar mineral content is a significant feature to replicate from hard connective tissues such as bone and dentin as it contributes to the final microarchitecture and mechanical stiffness of the biomineral composite. Herein, we report a straightforward route to produce densely mineralized collagenous composites via a surface-directed process devoid of the aid of polymer additives. Simulated body fluid (1×) is employed as a biomimetic crystallizing medium, following a preloading procedure on the collagen surface to quickly generate the amorphous precursor species required to initiate matrix mineralization. This approach consistently leads to the formation of extrafibrillar bioactive minerals in bulk collagen scaffolds, which may offer an advantage in the production of osteoconductive collagen-apatite materials for tissue engineering and repair purposes.
使用能够稳定流态无定形磷酸钙的聚合物添加剂是实现胶原纤维内矿化的关键。另一方面,这种仿生方法抑制了无约束纤维外空间中矿物晶体的成核,即纤维外矿化。纤维外矿化含量是从硬结缔组织(如骨和牙本质)中复制的重要特征,因为它有助于生物矿化复合材料的最终微观结构和机械刚度。在此,我们报告了一种通过表面导向过程生产致密矿化胶原复合材料的简单途径,该过程无需聚合物添加剂的辅助。模拟体液(1×)被用作仿生成核介质,在胶原表面进行预加载程序,以快速生成起始基质矿化所需的无定形前体物质。这种方法可在胶原支架的整体中始终形成纤维外生物活性矿物质,这在用于组织工程和修复目的的骨传导性胶原-磷灰石材料的生产中可能具有优势。