Bim-Junior Odair, Jing Shuxi, McAlpine James B, Chen Shao-Nong, Pauli Guido F, Bedran-Russo Ana K
Department of General Dental Sciences, Marquette University School of Dentistry, Milwaukee 53233, WI, USA.
Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago 60612, IL, USA.
J Appl Polym Sci. 2025 Apr 10;142(14). doi: 10.1002/app.56694. Epub 2025 Jan 22.
The therapeutic potential of plant-derived proanthocyanidins (PACs) interacting with mammalian collagen is extensive, notably in strengthening specialized extracellular matrix like the dentin matrix, crucial for reparative dental treatments. This study unveils an additional facet of PACs beyond their recognized chemical and biomechanical advantages in fibrillar collagen: specific tannins possess an inherent capability to influence collagen mineralization. By leveraging the degree of polymerization (DP) of PAC oligomers binding directly to type-I collagen, selective control over in vitro mineralization is achieved. Tetrameric PACs (DP=4) exhibit minimal barriers to extrafibrillar mineralization, whereas dimers (DP=2) effectively hinder nucleation/growth of surface minerals, potentially favoring intrafibrillar mineralization pathways. Additionally, our investigation highlights that bound PACs facilitate the infiltration of mineral precursors within collagen fibrils without relying on conventional process-directing agents. These findings underscore the promising utility of oligomeric PACs as a new class of plant-derived process-directing agents (PPDAs) with compelling mineral activities. While our primary focus is exploring mineralization through diverse PAC structures, establishing a translatable collagen mineralization model remains a ultimate goal of this line of research.
植物源原花青素(PACs)与哺乳动物胶原蛋白相互作用具有广泛的治疗潜力,尤其是在强化如牙本质基质等特殊细胞外基质方面,这对牙齿修复治疗至关重要。本研究揭示了PACs在纤维状胶原蛋白中已被认可的化学和生物力学优势之外的另一个方面:特定的单宁具有影响胶原蛋白矿化的内在能力。通过利用直接与I型胶原蛋白结合的PAC低聚物的聚合度(DP),实现了对体外矿化的选择性控制。四聚体PACs(DP = 4)对纤维外矿化的阻碍最小,而二聚体(DP = 2)则有效地阻碍表面矿物质的成核/生长,可能有利于纤维内矿化途径。此外,我们的研究强调,结合的PACs有助于矿物质前体在胶原蛋白纤维内的渗透,而无需依赖传统的过程导向剂。这些发现强调了低聚PACs作为一类具有引人注目的矿化活性的新型植物源过程导向剂(PPDAs)的潜在用途。虽然我们的主要重点是通过不同PAC结构探索矿化,但建立一个可转化的胶原蛋白矿化模型仍然是这一研究方向的最终目标。