Suppr超能文献

利用超长的基于金@银纳米线的聚合物纳米复合材料的高灵敏度、高柔性和生物相容性温度传感器。

Highly sensitive, flexible and biocompatible temperature sensor utilizing ultra-long Au@AgNW-based polymeric nanocomposites.

机构信息

Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.

Sustainability Science and Engineering Program, Tunghai University, Taichung 407224, Taiwan.

出版信息

Nanoscale. 2022 Feb 3;14(5):1742-1754. doi: 10.1039/d1nr05068k.

Abstract

Owing to their excellent sensitivity, stretchability, flexibility and conductivity, polymeric nanocomposites with conductive fillers have shown promise for a wide range of applications in bioelectronics and wearable devices. Herein, we report on the development of a flexible and biocompatible polymeric nanocomposite comprising ultra-long Ag-Au core-sheath nanowires (Au@AgNWs) dispersed in elastomeric media to fabricate a high-resolution wearable temperature sensor. Ultra-long AgNWs with an aspect ratio of about 1500 were synthesized using a Ca ion-mediated facile one-pot polyol process. To enhance the biocompatibility and anti-oxidative property of the AgNWs, a 10-20 nm gold (Au) layer was conformably deposited without affecting the original nanowire morphology. The core-sheath structure of Au@AgNWs was characterized using HRTEM and EDS elemental mapping while the biocompatibility and anti-oxidative properties were tested using hydrogen peroxide (HO) etching in solution phase. Finally, the fabricated nanowires were used to prepare the Au@AgNW-poly-ethylene glycol (PEG)-polyurethane (PU)-based nanocomposite ink which can be printed on interdigitated electrodes to fabricate a thermoresistive temperature sensor with negative temperature coefficient (NTC) of resistance and quick response time (<100 s). The Au@AgNW-PEG-PU nanocomposite was characterized in detail and a novel temperature sensing mechanism based on controlling the internanowire distance of the PEG coated Au@AgNWs percolation by means of capillarity force among the nanowires as a result of the glass transition temperature of thermosensitive PEG was demonstrated. The proposed printable temperature sensor is flexible and biocompatible and shows promise for a range of wearable applications.

摘要

由于具有优异的灵敏度、拉伸性、柔韧性和导电性,含有导电填料的聚合物纳米复合材料在生物电子学和可穿戴设备等广泛应用领域具有广阔的应用前景。在此,我们报告了一种由弹性体介质中分散的超长 Ag-Au 核-壳纳米线(Au@AgNWs)组成的柔性和生物相容性聚合物纳米复合材料的开发,用于制造高分辨率可穿戴温度传感器。使用 Ca 离子介导的简便一锅法多元醇工艺合成了具有约 1500 的纵横比的超长 AgNWs。为了提高 AgNWs 的生物相容性和抗氧化性,在不影响原始纳米线形态的情况下,在其表面上沉积了一层 10-20nm 的金(Au)层。通过高分辨率透射电子显微镜(HRTEM)和 EDS 元素映射对 Au@AgNWs 的核-壳结构进行了表征,同时通过在溶液相中使用过氧化氢(HO)刻蚀测试了其生物相容性和抗氧化性。最后,将制备的纳米线用于制备基于 Au@AgNW-聚乙二醇(PEG)-聚氨基甲酸酯(PU)的纳米复合材料油墨,该油墨可打印在叉指电极上,以制造具有负温度系数(NTC)电阻和快速响应时间(<100s)的热敏电阻温度传感器。详细表征了 Au@AgNW-PEG-PU 纳米复合材料,并基于通过纳米线之间的毛细作用力控制涂覆 PEG 的 Au@AgNW 渗流的内纳米线距离,演示了一种新的温度传感机制,这是由于热敏性 PEG 的玻璃化转变温度所致。所提出的可打印温度传感器具有柔韧性和生物相容性,有望在各种可穿戴应用中得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验